File size: 28,447 Bytes
81e69dc 51675df 81e69dc 51675df 81e69dc ec53eb5 81e69dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
import os
import json
#from glibvision.cv2_utils import get_numpy_text
from glibvision.numpy_utils import bulge_polygon
import numpy as np
import math
USE_CACHE = True
# face structures are same
# MIT LICENSED
# https://github.com/ageitgey/face_recognition
TOP_LIP = "top_lip"
BOTTOM_LIP = "bottom_lip"
PARTS_CHIN ="chin"
PARTS_LEFT_EYEBROW ="left_eyebrow"
PARTS_RIGHT_EYEBROW ="right_eyebrow"
PARTS_LEFT_EYE ="left_eye"
PARTS_RIGHT_EYE ="right_eye"
POINTS_TOP_LIP = "top_lip"
POINTS_BOTTOM_LIP = "bottom_lip"
POINTS_CHIN = "chin"
COLOR_WHITE=(255,255,255)
COLOR_BLACK=(0,0,0)
COLOR_ALPHA=(0,0,0,0)
DEBUG = False
DEBUG_CHIN = False
face_recognition = None
def load_image_file(path):
image = face_recognition.load_image_file(path)
data_path=path+".json"
if USE_CACHE and os.path.exists(data_path):
with open(data_path, "r") as f:
face_landmarks_list = json.loads(f.read())
else:
face_landmarks_list = image_to_landmarks_list(image)
if USE_CACHE:
json_data = json.dumps(face_landmarks_list)
with open(data_path, "w") as f:
f.write(json_data)
return image,face_landmarks_list
def save_landmarks(face_landmarks,out_path):
json_data = json.dumps(face_landmarks)
with open(out_path, "w") as f:
f.write(json_data)
def load_landmarks(input_path):
with open(input_path, "r") as f:
face_landmarks_list = json.loads(f.read())
return face_landmarks_list
def image_to_landmarks_list(image):
face_landmarks_list = face_recognition.face_landmarks(image)
return face_landmarks_list
def fill_polygon(image,face_landmarks_list,key,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
points=get_landmark_points(face_landmarks_list,key)
np_points = np.array(points,dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
cv2.polylines(image, [np_points], isClosed=True, color=line_color, thickness=thickness)
def fill_lip(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
points1=get_landmark_points(face_landmarks_list,TOP_LIP)[0:7]
points2=get_landmark_points(face_landmarks_list,BOTTOM_LIP)[0:7]
np_points = np.array(points1+points2[::-1],dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
if thickness > 0:
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def fill_top(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
points1=get_landmark_points(face_landmarks_list,TOP_LIP)[0:7]
np_points = np.array(points1,dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
if thickness > 0:
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def fill_top_lower(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
top_lip_points=get_landmark_points(face_landmarks_list,TOP_LIP) # 5 to 7 ,1 t- 11
points1 = [lerp_points(top_lip_points[5],top_lip_points[7],0.7)]+ \
[mid_points(top_lip_points[7],top_lip_points[8])]+ \
list(top_lip_points[8:11]) +\
[mid_points(top_lip_points[10],top_lip_points[11])]+ \
[lerp_points(top_lip_points[1],top_lip_points[11],0.7)]+\
[mid_points(top_lip_points[2],top_lip_points[10])]+\
[mid_points(top_lip_points[3],top_lip_points[9])]+\
[mid_points(top_lip_points[4],top_lip_points[8])]
np_points = np.array(points1,dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
if thickness > 0:
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def get_lip_mask_points(face_landmarks_list):
points1=get_landmark_points(face_landmarks_list,TOP_LIP)[0:7]
points2=get_landmark_points(face_landmarks_list,BOTTOM_LIP)[0:7]
return points1+points2
from scipy.special import comb
def bernstein_poly(i, n, t):
"""
n 次ベジェ曲線の i 番目の Bernstein 基底関数を計算する
"""
return comb(n, i) * (t**(n-i)) * (1 - t)**i
def bezier_curve(points, num_points=100):
"""
与えられた点からベジェ曲線を計算する
"""
nPoints = len(points)
xPoints = np.array([p[0] for p in points])
yPoints = np.array([p[1] for p in points])
t = np.linspace(0.0, 1.0, num_points)
polynomial_array = np.array([bernstein_poly(i, nPoints-1, t) for i in range(0, nPoints)])
xvals = np.dot(xPoints, polynomial_array)
yvals = np.dot(yPoints, polynomial_array)
return np.array(list(zip(xvals, yvals)))
import cv2
import numpy as np
def fill_eyes(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
points1=get_landmark_points(face_landmarks_list,PARTS_LEFT_EYE)
points2=get_landmark_points(face_landmarks_list,PARTS_RIGHT_EYE)
for points in [points1,points2]:
#points = bezier_curve(points, num_points=10)
#print(points)
points = bulge_polygon(points, bulge_factor=0.2)
#print(points)
np_points = np.array(points,dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
if thickness > 0:
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def fill_face(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
points1=get_landmark_points(face_landmarks_list,PARTS_LEFT_EYEBROW)
points2=get_landmark_points(face_landmarks_list,PARTS_RIGHT_EYEBROW)
points3=get_landmark_points(face_landmarks_list,PARTS_CHIN)
np_points = np.array(points1+points2+points3[::-1],dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def fill_face_inside(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
print("not support yet")
return None
points1=get_landmark_points(face_landmarks_list,PARTS_LEFT_EYEBROW)
points2=get_landmark_points(face_landmarks_list,PARTS_RIGHT_EYEBROW)
points3=get_landmark_points(face_landmarks_list,PARTS_CHIN)
points3=get_landmark_points(face_landmarks_list,PARTS_CHIN)
points3=get_landmark_points(face_landmarks_list,PARTS_CHIN)
np_points = np.array(points1+points2+points3[::-1],dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def half_pt(point1,point2):
return [sum(x) / 2 for x in zip(point1, point2)]
def line_lip(image,face_landmarks_list,key,thickness=1,line_color=(255,255,255)):
points=get_landmark_points(face_landmarks_list,key)
print(len(points))
#st=[(points[0]+points[11])/2]
st = [sum(x) / 2 for x in zip(points[0], points[11])]
#et=[(points[6]+points[7])/2]
et = [sum(x) / 2 for x in zip(points[6], points[7])]
print(et)
print(points)
np_points = np.array([st]+points[1:6]+[et],dtype=np.int32)
#if key == TOP_LIP:
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def get_lip_hole_points(face_landmarks_list):
top_points=get_landmark_points(face_landmarks_list,TOP_LIP)
bottom_points=get_landmark_points(face_landmarks_list,BOTTOM_LIP)
return top_points[7:]+bottom_points[7:]#[::-1]
#np_points = np.array(top_points[7:]+bottom_points[7:][::-1],dtype=np.int32)
def get_lip_hole_top_points(face_landmarks_list):
top_points=get_landmark_points(face_landmarks_list,TOP_LIP)
#bottom_points=get_landmark_points(face_landmarks_list,BOTTOM_LIP)
return top_points[7:]
def get_lip_hole_bottom_points(face_landmarks_list):
#top_points=get_landmark_points(face_landmarks_list,TOP_LIP)
bottom_points=get_landmark_points(face_landmarks_list,BOTTOM_LIP)
#inverted for connect top
return bottom_points[7:][::-1]
#for hide too long tooth
def get_lip_hole_bottom_half_points(face_landmarks_list):
#top_points=get_landmark_points(face_landmarks_list,TOP_LIP)
bottom_points=get_landmark_points(face_landmarks_list,BOTTOM_LIP)
#inverted for connect top
st = [sum(x) / 2 for x in zip(bottom_points[7], bottom_points[8])]
et = [sum(x) / 2 for x in zip(bottom_points[10], bottom_points[11])]
points = [st]+bottom_points[8:11]+[et]
#print(points)
return points[::-1]
def fill_points(points,image,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
np_points = np.array(points,dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
if thickness>0:
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def fill_lip_hole_top(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
np_points = np.array(get_lip_hole_top_points(face_landmarks_list),dtype=np.int32)
cv2.fillPoly(image, [np_points], fill_color)
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def fill_lip_hole(image,face_landmarks_list,thickness=1,line_color=(255,255,255),fill_color = (255,255,255)):
np_points = np.array(get_lip_hole_points(face_landmarks_list),dtype=np.int32)
#print(np_points)
cv2.fillPoly(image, [np_points], fill_color)
cv2.polylines(image, [np_points], isClosed=False, color=line_color, thickness=thickness)
def get_landmark_points(face_landmarks_list,key):
matching_landmark_points = []
for face_landmarks in face_landmarks_list:
for landmark_name, landmark_points in face_landmarks.items():
#matching_landmark_points = landmark_points.copy()
if landmark_name ==key:
for value in landmark_points:
matching_landmark_points.append([value[0],value[1]])
return tuple(matching_landmark_points)
def get_image_size(cv2_image):
return cv2_image.shape[:2]
def get_top_lip_box(face_landmarks_list,margin = 0):
print(f"get_top_lip_box margin = {margin}")
points = get_landmark_points(face_landmarks_list,TOP_LIP)
box= points_to_box(points)
if margin>0:
return ((box[0][0] - margin,box[0][1] - margin),(box[1][0] + margin, box[1][1] + margin))
else:
return box
def get_points_box(face_landmarks_list,key,margin = 0):
print(f"margin = {margin}")
points = get_landmark_points(face_landmarks_list,key)
box= points_to_box(points)
if margin>0:
return ((box[0][0] - margin,box[0][1] - margin),(box[1][0] + margin, box[1][1] + margin))
else:
return box
#for size up
def create_moved_image(image,src_points,dst_points,force_size=None):
# keep top of lip stable but affing must be 4 point
#print(f"src = {src_points}")
#print(f"dst = {dst_points}")
src_pts=np.array([src_points],dtype=np.float32)
dst_pts=np.array([dst_points],dtype=np.float32)
#BORDER_REPLICATE
return warp_with_auto_resize(image, src_pts, dst_pts,cv2.BORDER_REPLICATE,force_size)
# lip-index
"""
1 2 3 4 5
0 6
11 10 9 8 7
"""
def get_top_lip_align_points(face_landmarks_list):
landmark=get_landmark_points(face_landmarks_list,TOP_LIP)
index_center = 3
index_right= 0 #mirror
#index_ritht_top= 2 #mirror
#index_left_top= 4 #mirror
index_left = 6
#if landmark_name ==key:
# 0 is right edge
x1 = landmark[index_right][0]
y1 = landmark[index_right][1]
# 6 is left edge
x2 = landmark[index_left][0]
y2 = landmark[index_left][1]
#left_top = landmark[index_left_top][1]
#right_top = landmark[index_ritht_top][1]
#top = left_top if left_top<right_top else right_top
# bottom center position
cx = (x1+x2)/2
cy = (y1+y2)/2
diffx=(landmark[index_center][0]-cx)
diffy=(landmark[index_center][1]-cy)
#print(f"x1={x1} y1={y1} x2={x2} y2={y2} cx={cx} cy={cy} diffx={diffx} diffy={diffy}")
#plt.scatter(cx,cy, c='r', s=10)
return ((int(x1+diffx),int(y1+diffy)),(int(x2+diffx),int(y2+diffy)),(x1,y1),(x2,y2))
def calculate_new_point(start_point, distance, angle):
x1, y1 = start_point
angle_rad = math.radians(angle)
# 新しい点の座標を計算
new_x = x1 + distance * math.cos(angle_rad)
new_y = y1 + distance * math.sin(angle_rad)
return (new_x, new_y)
def calculate_clockwise_angle(point1, point2):
x1, y1 = point1
x2, y2 = point2
# atan2を使用して角度を計算
angle_rad = math.atan2(y2 - y1, x2 - x1)
# 反時計回りから時計回りに変換
if angle_rad < 0:
angle_rad += 2 * math.pi
# ラジアンから度に変換
angle_deg = math.degrees(angle_rad)
return angle_deg
def get_bottom_lip_align_points(landmarks_list):
points = get_landmark_points(landmarks_list,POINTS_BOTTOM_LIP)
return (points[0],points[3],points[6],points[9])
def get_bottom_lip_width_height(landmarks_list):
points = get_landmark_points(landmarks_list,POINTS_BOTTOM_LIP)
return (points[0][0] -points[6][0],points[3][1] -points[9][1])
def crop_image(image,x1,y1,x2,y2):
return image[y1:y2, x1:x2]
def crop_cv2_image_by_box(image,box):
return crop_image_by_box(image,box)
def crop_image_by_box(image,box):
print(f"crop_cv2_image_by_box yy2 xx2 {box[0][1]}:{box[1][1]},{box[0][0]}:{box[1][0]}")
return image[box[0][1]:box[1][1], box[0][0]:box[1][0]]
def get_top_lip_datas(img,margin=4):
landmarks_list=image_to_landmarks_list(img)
box = get_top_lip_box(landmarks_list,margin)
cropped_img = crop_cv2_image_by_box(img,box)
points = get_top_lip_points(landmarks_list) #its rectangle but not square
return landmarks_list,cropped_img,points,box
def get_bottom_lip_datas(img,margin=4):
landmarks_list=image_to_landmarks_list(img)
box = get_points_box(landmarks_list,POINTS_BOTTOM_LIP,margin)
cropped_img = crop_cv2_image_by_box(img,box)
points = get_bottom_lip_align_points(landmarks_list) #its rectangle but not square
return landmarks_list,cropped_img,points,box
def offset_points(points,offset):
new_points = []
for point in points:
new_points.append((point[0]-offset[0],point[1]-offset[1]))
return new_points
def points_to_box(points):
min_x = 0
min_y = 0
min_x = float('inf')
min_y = float('inf')
max_x= 0
max_y= 0
for point in points:
if point[0]>max_x:
max_x=int(point[0])
if point[1]>max_y:
max_y=int(point[1])
if point[0]<min_x:
min_x=int(point[0])
if point[1]<min_y:
min_y=int(point[1])
return ((min_x,min_y),(max_x,max_y))
import cv2
import numpy as np
def warp_with_auto_resize(img, src_pts, dst_pts, borderMode=cv2.BORDER_TRANSPARENT, force_size=None):
"""
画像を WRAP 変換し、はみ出した場合は自動的にサイズを調整します。
Args:
img: 変換対象の画像 (numpy array)
src_pts: 変換元の四角形の頂点 (numpy array)
dst_pts: 変換先の四角形の頂点 (numpy array)
Returns:
変換後の画像 (numpy array)
"""
# 変換行列を計算
mat = cv2.getPerspectiveTransform(src_pts, dst_pts)
# 変換後の画像サイズを計算
h, w = img.shape[:2]
corners = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
warped_corners = cv2.perspectiveTransform(corners.reshape(-1, 1, 2), mat).reshape(-1, 2)
# 変換後の画像の最小矩形を計算 (元の画像の四隅も含めて計算)
min_x = np.min(warped_corners[:, 0])
min_y = np.min(warped_corners[:, 1])
max_x = np.max(warped_corners[:, 0])
max_y = np.max(warped_corners[:, 1])
new_w, new_h = int(max_x - min_x), int(max_y - min_y)
# 変換行列を更新 (平行移動成分を追加)
mat[0, 2] += -min_x
mat[1, 2] += -min_y
if force_size:
new_w = force_size[0]
new_h = force_size[1]
warped_img = cv2.warpPerspective(img, mat, (new_w, new_h), flags=cv2.INTER_LANCZOS4, borderMode=borderMode)
return warped_img
def warp_with_auto_resize1(img, src_pts, dst_pts,borderMode= cv2.BORDER_TRANSPARENT,force_size=None):
"""
画像を WRAP 変換し、はみ出した場合は自動的にサイズを調整します。
Args:
img: 変換対象の画像 (numpy array)
src_pts: 変換元の四角形の頂点 (numpy array)
dst_pts: 変換先の四角形の頂点 (numpy array)
Returns:
変換後の画像 (numpy array)
"""
# 変換行列を計算
mat = cv2.getPerspectiveTransform(src_pts, dst_pts)
# 変換後の画像サイズを計算
h, w = img.shape[:2]
#print(f"img w{w} h{h}")
corners = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
warped_corners = cv2.perspectiveTransform(corners.reshape(-1, 1, 2), mat).reshape(-1, 2)
# 変換後の画像の最小矩形を計算
min_x, min_y = np.min(warped_corners, axis=0)
max_x, max_y = np.max(warped_corners, axis=0)
new_w, new_h = int(max_x - min_x), int(max_y - min_y)
#print(f"min x {min_x} min y {min_y}")
#print(f"max x {max_x} max y {max_y}")
# 変換行列を更新 (平行移動成分を追加)
mat[0, 2] += -min_x
mat[1, 2] += -min_y
#print(f"audo w{new_w} h{new_h}")
if force_size:
new_w = force_size[0]
new_h = force_size[1]
warped_img = cv2.warpPerspective(img, mat, (new_w, new_h),flags=cv2.INTER_LANCZOS4, borderMode=borderMode)
return warped_img
def get_channel(np_array):
return np_array.shape[2] if np_array.ndim == 3 else 1
def print_numpy(np_array,key=""):
channel = get_channel(np_array)
print(f"{key} shape = {np_array.shape} channel = {channel} ndim = {np_array.ndim} size = {np_array.size}")
def create_color_image(img,color=(255,255,255)):
mask = np.zeros_like(img)
h, w = img.shape[:2]
cv2.rectangle(mask, (0, 0), (w, h), color, -1)
return mask
def create_mask(img,color=(255,255,255)):
mask = np.zeros_like(img)
h, w = img.shape[:2]
cv2.rectangle(mask, (0, 0), (w, h), color, -1)
return mask
def create_rgba(width,height):
return np.zeros((height, width, 4), dtype=np.uint8)
def create_rgb(width,height):
return np.zeros((height, width, 3), dtype=np.uint8)
def create_gray(width,height):
return np.zeros((height, width), dtype=np.uint8)
def copy_image(img1, img2, x, y):
"""
Paste img2 onto img1 at position (x, y).
If img2 extends beyond the bounds of img1, only the overlapping part is pasted.
Parameters:
img1 (numpy.ndarray): The base image to modify (H, W, C).
img2 (numpy.ndarray): The image to paste onto img1 (h, w, C).
x (int): The x-coordinate where img2 will be placed.
y (int): The y-coordinate where img2 will be placed.
Raises:
TypeError: If img1 or img2 are not NumPy arrays.
ValueError: If x or y are out of bounds of img1.
ValueError: If img1 and img2 do not have the same number of channels or are not 3-dimensional arrays.
"""
# Type check
if not isinstance(img1, np.ndarray) or not isinstance(img2, np.ndarray):
raise TypeError("img1 and img2 must be NumPy arrays.")
# Channel count check
if img1.ndim != 3 or img2.ndim != 3 or img1.shape[2] != img2.shape[2]:
raise ValueError("img1 and img2 must have the same number of channels and be 3-dimensional arrays.")
# Bounds check
max_y, max_x, _ = img1.shape
if not (0 <= y < max_y and 0 <= x < max_x):
raise ValueError(f"x ({x}) and y ({y}) must be within the bounds of img1 ({max_x}, {max_y}).")
# Calculate the height and width of the overlapping part
h = min(img2.shape[0], max_y - y)
w = min(img2.shape[1], max_x - x)
# Paste the overlapping part
img1[y:y+h, x:x+w] = img2[:h, :w]
def copy_color(img1,x,y,x2,y2,color):
color_img = np.full((y2-y, x2-x, 4), color, dtype=np.uint8)
img1[y:y2, x:x2] = color_img
def multiply_point(point,multiply):
return int(point[0]*multiply),int(point[1]*multiply)
def get_resized_top_pos(points,multiply=0.5):
diff_left = multiply_point((points[0][0]-points[2][0],points[0][1]-points[2][1]),multiply)
diff_right = multiply_point((points[1][0]-points[3][0],points[1][1]-points[3][1]),multiply)
return (diff_right,diff_left)
def get_alpha_image(base_image,landmarks_list,key,margin = 0,dilation_size = 2,gaussian_size = 2):
box = get_points_box(landmarks_list,key,margin)
# box expand margin
cropped_img = crop_cv2_image_by_box(base_image,box)
# convert RGBA
if cropped_img.shape[2] == 3: # Check if the image has 3 channels (RGB)
image_rgba = cv2.cvtColor(cropped_img, cv2.COLOR_BGR2BGRA)
mask = np.zeros(cropped_img.shape[:2], dtype="uint8")
else:
print("already alpha skipped")
image_rgba = cropped_img
mask = np.zeros(cropped_img.shape[:2], dtype="uint8")
#mask = cropped_img[:, :, 3].copy() # if you use this .some how block
global_points = get_landmark_points(landmarks_list,key)
local_points = offset_points(global_points,box[0])
print(local_points)
# create Lip Mask
np_points = np.array(local_points,dtype=np.int32)
cv2.fillPoly(mask, [np_points], 255)
kernel = np.ones((dilation_size, dilation_size), np.uint8)
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
#dilated_mask = cv2.erode(mask, kernel, iterations=1) # TODO support dilation_size
# Gaussian Blur
if gaussian_size > 0:
smooth_mask = cv2.GaussianBlur(dilated_mask, (0,0 ), sigmaX=gaussian_size, sigmaY=gaussian_size)
expanded_mask = np.expand_dims(smooth_mask, axis=-1)
else:
expanded_mask = np.expand_dims(dilated_mask, axis=-1)
#lip_utils.print_numpy(image_rgba,"rgba")
#lip_utils.print_numpy(smooth_mask,"smooth")
#lip_utils.print_numpy(expanded_mask,"expanded_mask")
image_rgba[..., 3] = expanded_mask[..., 0]
return image_rgba,box
def apply_mask(image,mask):
if len(mask.shape) == 3:
expanded_mask = mask
else:
expanded_mask = np.expand_dims(mask, axis=-1)
if len(mask.shape)!=3:
error = f"image must be shape 3 {image.shape}"
raise ValueError(error)
if get_channel(image)!=4:
image_rgba = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA) #why rgb to gray?
else:
image_rgba = image
image_rgba[..., 3] = expanded_mask[..., 0]
return image_rgba
def apply_mask_alpha(image,mask,invert=False):
if len(mask.shape) == 3:
expanded_mask = mask
else:
expanded_mask = np.expand_dims(mask, axis=-1)
image_rgba = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
if invert:
image_rgba[..., 3] = expanded_mask[..., 0]
else:
image_rgba[..., 3] = 255 - expanded_mask[..., 0]
return image_rgba
def print_width_height(image,label):
new_h,new_w = get_image_size(image)
print(f"{label}:width = {new_w} height = {new_h}")
def create_mask_from_points(img,points,dilation_size=4,gaussian_size=4):
np_points = np.array(points,dtype=np.int32)
mask = np.zeros(img.shape[:2], dtype="uint8")
cv2.fillPoly(mask, [np_points], 255)
kernel = np.ones((abs(dilation_size),abs(dilation_size) ), np.uint8)
if dilation_size > 0:
dilated_mask = cv2.dilate(mask, kernel, iterations=1)
else:
dilated_mask = cv2.erode(mask, kernel, iterations=1) # TODO support dilation_size
# Gaussian Blur
if gaussian_size > 0:
smooth_mask = cv2.GaussianBlur(dilated_mask, (0,0 ), sigmaX=gaussian_size, sigmaY=gaussian_size)
expanded_mask = np.expand_dims(smooth_mask, axis=-1)
else:
expanded_mask = np.expand_dims(dilated_mask, axis=-1)
return expanded_mask
#lip_utils.print_numpy(image_rgba,"rgba")
#lip_utils.print_numpy(smooth_mask,"smooth")
#lip_utils.print_numpy(expanded_mask,"expanded_mask")
def mid_points(point1,point2):
return [sum(x) / 2 for x in zip(point1,point2)]
def lerp_points(point1, point2, lerp):
return [(1.0 - lerp) * p1 + lerp * p2 for p1, p2 in zip(point1, point2)]
def get_jaw_points(face_landmarks_list):
chin_points = get_landmark_points(face_landmarks_list,POINTS_CHIN)
bottom_lip_points = get_landmark_points(face_landmarks_list,POINTS_BOTTOM_LIP)
points =[]
points.extend(chin_points[4:13])
points.append(mid_points(chin_points[12],bottom_lip_points[0]))
points.append(mid_points(chin_points[8],bottom_lip_points[3]))
points.append(mid_points(chin_points[4],bottom_lip_points[6]))
return points
def get_bottom_mid_drop_size(open_size_y,lip_height):
# when full open case open_size_y 40 lip become half
mid_lip_move_ratio = open_size_y/80.0 if open_size_y>0 else 0
return mid_lip_move_ratio*lip_height
def fade_in_x(img,size):
if size==0:
return
per_pixel = 1.0/size
for y in range(img.shape[0]):
for x in range(img.shape[1]):
if x <size:
alpha_base = per_pixel * x
# アルファ値を変更し、ピクセルに設定
#print(f"before x ={x} = {img[y,x,3]} after = {img[y,x,3] * alpha_base}")
img[y, x, 3] = img[y,x,3] * alpha_base
def fade_out_x(img,size):
if size==0:
return
per_pixel = 1.0/size
w = img.shape[1]
for y in range(img.shape[0]):
for x in range(img.shape[1]):
if x >w:
diff = x - w
alpha_base = 1.0 - (per_pixel * x)
# アルファ値を変更し、ピクセルに設定
#print(f"before x ={x} = {img[y,x,3]} after = {img[y,x,3] * alpha_base}")
img[y, x, 3] = img[y,x,3] * alpha_base
def alpha_blend_with_image2_alpha(image1, image2):
return cv2.addWeighted(image1, 1, image2, 1, 0)
def numpy_alpha_blend_with_image2_alpha(image1, image2,invert=False):
"""
image1をimage2のアルファチャンネルを使用してアルファブレンディングします。
"""
# 画像のサイズを確認し、必要に応じてリサイズします。
if image1.shape[:2] != image2.shape[:2]:
image1 = cv2.resize(image1, (image2.shape[1], image2.shape[0]))
src1 = np.array(image1)
src2 = np.array(image2)
mask1 = np.array(image2[:, :, 3])
mask1 = mask1 / 255
mask1 = np.expand_dims(mask1, axis=-1)
if invert:
dst = src1 * (1-mask1) + src2 * mask1
else:
dst = src1 * mask1 + src2 * (1 - mask1)
# アルファブレンディングを行います。
#blended = cv2.cvtColor(dst, cv2.COLOR_BGRA2BGRA)
dst = dst.astype(np.uint8)
return dst
def distance_2d(point1, point2):
return math.sqrt((point2[0] - point1[0])**2 + (point2[1] - point1[1])**2)
# points[index][x=0 y=1] index is see landmark image by plot2.py
def get_top_lip_thicks(landmarks_list,is_distance_base=False):
points = get_landmark_points(landmarks_list,POINTS_TOP_LIP)
if is_distance_base:
return (distance_2d(points[10],points[2]),distance_2d(points[9],points[3]),distance_2d(points[8],points[4]))
return (points[10][1] -points[2][1],points[9][1] -points[3][1],points[8][1] -points[4][1])
def scale_down_values(data, scale_factor=0.25):
"""
Scales down the values in a list of dictionaries by a given scale factor.
Parameters:
- data: A list of dictionaries where each dictionary represents facial landmarks.
- scale_factor: The factor by which to scale down the values. Default is 0.25 (1/4).
Returns:
- A new list of dictionaries with scaled down values.
"""
scaled_data = []
for item in data:
scaled_item = {}
for key, values in item.items():
scaled_values = [(int(x * scale_factor), int(y * scale_factor)) for x, y in values]
scaled_item[key] = scaled_values
scaled_data.append(scaled_item)
return scaled_data
def save_landmarks(face_landmarks,out_path):
json_data = json.dumps(face_landmarks)
with open(out_path, "w") as f:
f.write(json_data)
def load_landmarks(input_path):
with open(input_path, "r") as f:
face_landmarks_list = json.loads(f.read())
return face_landmarks_list
|