Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,437 Bytes
dc5e397 0c3c890 dc5e397 5359828 dc5e397 78e837a dc5e397 4fec5dd dc5e397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch
from diffusers import AutoencoderKL
from diffusers import StableDiffusionUpscalePipeline
from PIL import Image
device = "cuda"
seed = 100
def execute(input_image):
model_id = "stabilityai/stable-diffusion-x4-upscaler"
# GPUを使用する場合
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16") #not support vae?
pipe = pipe.to(device)
pipe.enable_attention_slicing()
#pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
#pipe.enable_vae_tiling()
pipe.vae.enable_tiling()
# 画像のパスとプロンプト
prompt = "beautiful girl"
first_resize_w = 0
first_resize_h = 0
# 画像の読み込みとリサイズ
image = input_image#.convert("RGB")
low_res_img = image
if first_resize_w!=0 and first_resize_h!=0:
low_res_img = image.resize((first_resize_w, first_resize_h))
upscaled_image = upscale(pipe, prompt, low_res_img)
return upscaled_image
def upscale(pipe, prompt, img, step=50, guidance_scale=7.5):
generator = torch.Generator(device).manual_seed(seed)
return pipe(prompt=prompt,generator=generator, image=img, num_inference_steps=step, guidance_scale=guidance_scale).images[0]
if __name__ == "__main__":
image = Image.open("sample.jpg")
upscaled_image = execute(image)
upscaled_image.save("output.jpg")
|