# import gradio as gr # gr.Interface.load("models/Akbartus/Lora360").launch(show_api=True) import gradio as gr import requests import io from PIL import Image import json import os import logging import math from tqdm import tqdm import time #logging.basicConfig(level=logging.DEBUG) with open('loras.json', 'r') as f: loras = json.load(f) # Select the default LoRA default_lora = loras[0] # Assuming the first LoRA is the default one def run_lora(prompt, progress=gr.Progress(track_tqdm=True)): logging.debug(f"Inside run_lora") api_url = f"https://api-inference.huggingface.co/models/{default_lora['repo']}" trigger_word = default_lora["trigger_word"] payload = { "inputs": f"{prompt} {trigger_word}", "parameters":{"negative_prompt": "bad art, ugly, watermark, deformed", "num_inference_steps": 30, "scheduler":"DPMSolverMultistepScheduler"}, } # Add a print statement to display the API request print(f"API Request: {api_url}") print(f"API Payload: {payload}") error_count = 0 pbar = tqdm(total=None, desc="Loading model") while(True): response = requests.post(api_url, json=payload) if response.status_code == 200: return Image.open(io.BytesIO(response.content)) elif response.status_code == 503: time.sleep(1) pbar.update(1) elif response.status_code == 500 and error_count < 5: print(response.content) time.sleep(1) error_count += 1 continue else: logging.error(f"API Error: {response.status_code}") raise gr.Error("API Error: Unable to fetch the image.") # Raise a Gradio error here with gr.Blocks(css="custom.css") as app: title = gr.Markdown("# LoRA 360 Demonstration") description = gr.Markdown( "### Lora 360 demonstration and API endpoint." ) with gr.Row(): prompt_title = gr.Markdown(f"### Type a prompt for {default_lora['title']}") with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder=f"Type a prompt for {default_lora['title']}") button = gr.Button("Run") result = gr.Image(interactive=False, label="Generated Image") prompt.submit( fn=run_lora, inputs=[prompt], outputs=[result] ) button.click( fn=run_lora, inputs=[prompt], outputs=[result] ) app.queue(max_size=20, concurrency_count=5) app.launch()