Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# gr.Interface.load("models/Akbartus/Lora360").launch(show_api=True) | |
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import json | |
import os | |
import logging | |
import math | |
from tqdm import tqdm | |
import time | |
#logging.basicConfig(level=logging.DEBUG) | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# Select the default LoRA | |
default_lora = loras[0] # Assuming the first LoRA is the default one | |
def run_lora(prompt, progress=gr.Progress(track_tqdm=True)): | |
logging.debug(f"Inside run_lora") | |
api_url = f"https://api-inference.huggingface.co/models/{default_lora['repo']}" | |
trigger_word = default_lora["trigger_word"] | |
payload = { | |
"inputs": f"{prompt} {trigger_word}", | |
"parameters":{"negative_prompt": "bad art, ugly, watermark, deformed", "num_inference_steps": 30, "scheduler":"DPMSolverMultistepScheduler"}, | |
} | |
# Add a print statement to display the API request | |
print(f"API Request: {api_url}") | |
print(f"API Payload: {payload}") | |
error_count = 0 | |
pbar = tqdm(total=None, desc="Loading model") | |
while(True): | |
response = requests.post(api_url, json=payload) | |
if response.status_code == 200: | |
return Image.open(io.BytesIO(response.content)) | |
elif response.status_code == 503: | |
time.sleep(1) | |
pbar.update(1) | |
elif response.status_code == 500 and error_count < 5: | |
print(response.content) | |
time.sleep(1) | |
error_count += 1 | |
continue | |
else: | |
logging.error(f"API Error: {response.status_code}") | |
raise gr.Error("API Error: Unable to fetch the image.") # Raise a Gradio error here | |
with gr.Blocks(css="custom.css") as app: | |
title = gr.Markdown("# LoRA 360 Demonstration") | |
description = gr.Markdown( | |
"### Lora 360 demonstration and API endpoint." | |
) | |
with gr.Row(): | |
prompt_title = gr.Markdown(f"### Type a prompt for {default_lora['title']}") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder=f"Type a prompt for {default_lora['title']}") | |
button = gr.Button("Run") | |
result = gr.Image(interactive=False, label="Generated Image") | |
prompt.submit( | |
fn=run_lora, | |
inputs=[prompt], | |
outputs=[result] | |
) | |
button.click( | |
fn=run_lora, | |
inputs=[prompt], | |
outputs=[result] | |
) | |
app.queue(max_size=20, concurrency_count=5) | |
app.launch() | |