Spaces:
Runtime error
Runtime error
add-0216-135728
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -43
- .gitignore +0 -160
- AR/data/bucket_sampler.py +0 -162
- AR/data/data_module.py +0 -74
- AR/data/dataset.py +0 -320
- AR/models/__init__.py +0 -0
- AR/models/t2s_lightning_module.py +0 -140
- AR/models/t2s_lightning_module_onnx.py +0 -106
- AR/models/t2s_model.py +0 -327
- AR/models/t2s_model_onnx.py +0 -337
- AR/models/utils.py +0 -160
- AR/modules/__init__.py +0 -0
- AR/modules/activation.py +0 -428
- AR/modules/activation_onnx.py +0 -178
- AR/modules/embedding.py +0 -81
- AR/modules/embedding_onnx.py +0 -63
- AR/modules/lr_schedulers.py +0 -82
- AR/modules/optim.py +0 -622
- AR/modules/patched_mha_with_cache.py +0 -463
- AR/modules/patched_mha_with_cache_onnx.py +0 -92
- AR/modules/scaling.py +0 -335
- AR/modules/transformer.py +0 -378
- AR/modules/transformer_onnx.py +0 -292
- AR/text_processing/__init__.py +0 -0
- AR/text_processing/phonemizer.py +0 -78
- AR/text_processing/symbols.py +0 -9
- AR/utils/__init__.py +0 -37
- AR/utils/initialize.py +0 -38
- AR/utils/io.py +0 -34
- MODELS/21/1.wav → BV2/MODELS/AW.pth +2 -2
- MODELS/21/11.wav → BV2/MODELS/Arasaka.pth +2 -2
- MODELS/21/191.wav → BV2/MODELS/HER_1100.pth +2 -2
- MODELS/21/21.ckpt → BV2/MODELS/J8900.pth +2 -2
- BV2/MODELS/TERRA.pth +3 -0
- BV2/MODELS/adorabledarling.pth +3 -0
- BV2/MODELS/hypno.pth +3 -0
- BV2/MODELS/nikki9400.pth +3 -0
- BV2/MODELS/premj.pth +3 -0
- BV2/MODELS/rabbit4900.pth +3 -0
- BV2/MODELS/take2.pth +3 -0
- BV2/MODELS/v3.pth +3 -0
- {AR → BV2}/__init__.py +0 -0
- BV2/__pycache__/__init__.cpython-310.pyc +0 -0
- BV2/__pycache__/attentions.cpython-310.pyc +0 -0
- BV2/__pycache__/commons.cpython-310.pyc +0 -0
- BV2/__pycache__/models.cpython-310.pyc +0 -0
- BV2/__pycache__/modules.cpython-310.pyc +0 -0
- BV2/__pycache__/transforms.cpython-310.pyc +0 -0
- BV2/__pycache__/utils.cpython-310.pyc +0 -0
- BV2/attentions.py +343 -0
.gitattributes
CHANGED
@@ -1,46 +1,4 @@
|
|
1 |
-
*.
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
core.o filter=lfs diff=lfs merge=lfs -text
|
37 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
38 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
39 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
41 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
42 |
-
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
43 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
44 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
45 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
46 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
2 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
# Byte-compiled / optimized / DLL files
|
2 |
-
__pycache__/
|
3 |
-
*.py[cod]
|
4 |
-
*$py.class
|
5 |
-
|
6 |
-
# C extensions
|
7 |
-
*.so
|
8 |
-
|
9 |
-
# Distribution / packaging
|
10 |
-
.Python
|
11 |
-
build/
|
12 |
-
develop-eggs/
|
13 |
-
dist/
|
14 |
-
downloads/
|
15 |
-
eggs/
|
16 |
-
.eggs/
|
17 |
-
lib/
|
18 |
-
lib64/
|
19 |
-
parts/
|
20 |
-
sdist/
|
21 |
-
var/
|
22 |
-
wheels/
|
23 |
-
share/python-wheels/
|
24 |
-
*.egg-info/
|
25 |
-
.installed.cfg
|
26 |
-
*.egg
|
27 |
-
MANIFEST
|
28 |
-
|
29 |
-
# PyInstaller
|
30 |
-
# Usually these files are written by a python script from a template
|
31 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
-
*.manifest
|
33 |
-
*.spec
|
34 |
-
|
35 |
-
# Installer logs
|
36 |
-
pip-log.txt
|
37 |
-
pip-delete-this-directory.txt
|
38 |
-
|
39 |
-
# Unit test / coverage reports
|
40 |
-
htmlcov/
|
41 |
-
.tox/
|
42 |
-
.nox/
|
43 |
-
.coverage
|
44 |
-
.coverage.*
|
45 |
-
.cache
|
46 |
-
nosetests.xml
|
47 |
-
coverage.xml
|
48 |
-
*.cover
|
49 |
-
*.py,cover
|
50 |
-
.hypothesis/
|
51 |
-
.pytest_cache/
|
52 |
-
cover/
|
53 |
-
|
54 |
-
# Translations
|
55 |
-
*.mo
|
56 |
-
*.pot
|
57 |
-
|
58 |
-
# Django stuff:
|
59 |
-
*.log
|
60 |
-
local_settings.py
|
61 |
-
db.sqlite3
|
62 |
-
db.sqlite3-journal
|
63 |
-
|
64 |
-
# Flask stuff:
|
65 |
-
instance/
|
66 |
-
.webassets-cache
|
67 |
-
|
68 |
-
# Scrapy stuff:
|
69 |
-
.scrapy
|
70 |
-
|
71 |
-
# Sphinx documentation
|
72 |
-
docs/_build/
|
73 |
-
|
74 |
-
# PyBuilder
|
75 |
-
.pybuilder/
|
76 |
-
target/
|
77 |
-
|
78 |
-
# Jupyter Notebook
|
79 |
-
.ipynb_checkpoints
|
80 |
-
|
81 |
-
# IPython
|
82 |
-
profile_default/
|
83 |
-
ipython_config.py
|
84 |
-
|
85 |
-
# pyenv
|
86 |
-
# For a library or package, you might want to ignore these files since the code is
|
87 |
-
# intended to run in multiple environments; otherwise, check them in:
|
88 |
-
# .python-version
|
89 |
-
|
90 |
-
# pipenv
|
91 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
-
# install all needed dependencies.
|
95 |
-
#Pipfile.lock
|
96 |
-
|
97 |
-
# poetry
|
98 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
-
# commonly ignored for libraries.
|
101 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
-
#poetry.lock
|
103 |
-
|
104 |
-
# pdm
|
105 |
-
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
-
#pdm.lock
|
107 |
-
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
-
# in version control.
|
109 |
-
# https://pdm.fming.dev/#use-with-ide
|
110 |
-
.pdm.toml
|
111 |
-
|
112 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
-
__pypackages__/
|
114 |
-
|
115 |
-
# Celery stuff
|
116 |
-
celerybeat-schedule
|
117 |
-
celerybeat.pid
|
118 |
-
|
119 |
-
# SageMath parsed files
|
120 |
-
*.sage.py
|
121 |
-
|
122 |
-
# Environments
|
123 |
-
.env
|
124 |
-
.venv
|
125 |
-
env/
|
126 |
-
venv/
|
127 |
-
ENV/
|
128 |
-
env.bak/
|
129 |
-
venv.bak/
|
130 |
-
|
131 |
-
# Spyder project settings
|
132 |
-
.spyderproject
|
133 |
-
.spyproject
|
134 |
-
|
135 |
-
# Rope project settings
|
136 |
-
.ropeproject
|
137 |
-
|
138 |
-
# mkdocs documentation
|
139 |
-
/site
|
140 |
-
|
141 |
-
# mypy
|
142 |
-
.mypy_cache/
|
143 |
-
.dmypy.json
|
144 |
-
dmypy.json
|
145 |
-
|
146 |
-
# Pyre type checker
|
147 |
-
.pyre/
|
148 |
-
|
149 |
-
# pytype static type analyzer
|
150 |
-
.pytype/
|
151 |
-
|
152 |
-
# Cython debug symbols
|
153 |
-
cython_debug/
|
154 |
-
|
155 |
-
# PyCharm
|
156 |
-
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
-
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
-
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
-
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
-
#.idea/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/data/bucket_sampler.py
DELETED
@@ -1,162 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/bucketsampler.py
|
2 |
-
import itertools
|
3 |
-
import math
|
4 |
-
import random
|
5 |
-
from random import shuffle
|
6 |
-
from typing import Iterator
|
7 |
-
from typing import Optional
|
8 |
-
from typing import TypeVar
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.distributed as dist
|
12 |
-
from torch.utils.data import Dataset
|
13 |
-
from torch.utils.data import Sampler
|
14 |
-
|
15 |
-
__all__ = [
|
16 |
-
"DistributedBucketSampler",
|
17 |
-
]
|
18 |
-
|
19 |
-
T_co = TypeVar("T_co", covariant=True)
|
20 |
-
|
21 |
-
|
22 |
-
class DistributedBucketSampler(Sampler[T_co]):
|
23 |
-
r"""
|
24 |
-
sort the dataset wrt. input length
|
25 |
-
divide samples into buckets
|
26 |
-
sort within buckets
|
27 |
-
divide buckets into batches
|
28 |
-
sort batches
|
29 |
-
"""
|
30 |
-
|
31 |
-
def __init__(
|
32 |
-
self,
|
33 |
-
dataset: Dataset,
|
34 |
-
num_replicas: Optional[int] = None,
|
35 |
-
rank: Optional[int] = None,
|
36 |
-
shuffle: bool = True,
|
37 |
-
seed: int = 0,
|
38 |
-
drop_last: bool = False,
|
39 |
-
batch_size: int = 32,
|
40 |
-
) -> None:
|
41 |
-
if num_replicas is None:
|
42 |
-
if not dist.is_available():
|
43 |
-
raise RuntimeError("Requires distributed package to be available")
|
44 |
-
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
|
45 |
-
if rank is None:
|
46 |
-
if not dist.is_available():
|
47 |
-
raise RuntimeError("Requires distributed package to be available")
|
48 |
-
rank = dist.get_rank() if torch.cuda.is_available() else 0
|
49 |
-
if torch.cuda.is_available():
|
50 |
-
torch.cuda.set_device(rank)
|
51 |
-
if rank >= num_replicas or rank < 0:
|
52 |
-
raise ValueError(
|
53 |
-
"Invalid rank {}, rank should be in the interval"
|
54 |
-
" [0, {}]".format(rank, num_replicas - 1)
|
55 |
-
)
|
56 |
-
self.dataset = dataset
|
57 |
-
self.num_replicas = num_replicas
|
58 |
-
self.rank = rank
|
59 |
-
self.epoch = 0
|
60 |
-
self.drop_last = drop_last
|
61 |
-
# If the dataset length is evenly divisible by # of replicas, then there
|
62 |
-
# is no need to drop any data, since the dataset will be split equally.
|
63 |
-
if (
|
64 |
-
self.drop_last and len(self.dataset) % self.num_replicas != 0
|
65 |
-
): # type: ignore[arg-type]
|
66 |
-
# Split to nearest available length that is evenly divisible.
|
67 |
-
# This is to ensure each rank receives the same amount of data when
|
68 |
-
# using this Sampler.
|
69 |
-
self.num_samples = math.ceil(
|
70 |
-
(len(self.dataset) - self.num_replicas)
|
71 |
-
/ self.num_replicas # type: ignore[arg-type]
|
72 |
-
)
|
73 |
-
else:
|
74 |
-
self.num_samples = math.ceil(
|
75 |
-
len(self.dataset) / self.num_replicas
|
76 |
-
) # type: ignore[arg-type]
|
77 |
-
self.total_size = self.num_samples * self.num_replicas
|
78 |
-
self.shuffle = shuffle
|
79 |
-
self.seed = seed
|
80 |
-
self.batch_size = batch_size
|
81 |
-
self.id_with_length = self._get_sample_lengths()
|
82 |
-
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
83 |
-
|
84 |
-
def _get_sample_lengths(self):
|
85 |
-
id_with_lengths = []
|
86 |
-
for i in range(len(self.dataset)):
|
87 |
-
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
88 |
-
id_with_lengths.sort(key=lambda x: x[1])
|
89 |
-
return id_with_lengths
|
90 |
-
|
91 |
-
def make_buckets(self, bucket_width: float = 2.0):
|
92 |
-
buckets = []
|
93 |
-
cur = []
|
94 |
-
max_sec = bucket_width
|
95 |
-
for id, sec in self.id_with_length:
|
96 |
-
if sec < max_sec:
|
97 |
-
cur.append(id)
|
98 |
-
else:
|
99 |
-
buckets.append(cur)
|
100 |
-
cur = [id]
|
101 |
-
max_sec += bucket_width
|
102 |
-
if len(cur) > 0:
|
103 |
-
buckets.append(cur)
|
104 |
-
return buckets
|
105 |
-
|
106 |
-
def __iter__(self) -> Iterator[T_co]:
|
107 |
-
if self.shuffle:
|
108 |
-
# deterministically shuffle based on epoch and seed
|
109 |
-
g = torch.Generator()
|
110 |
-
g.manual_seed(self.seed + self.epoch)
|
111 |
-
random.seed(self.epoch + self.seed)
|
112 |
-
shuffled_bucket = []
|
113 |
-
for buc in self.id_buckets:
|
114 |
-
buc_copy = buc.copy()
|
115 |
-
shuffle(buc_copy)
|
116 |
-
shuffled_bucket.append(buc_copy)
|
117 |
-
grouped_batch_size = self.batch_size * self.num_replicas
|
118 |
-
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
119 |
-
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
120 |
-
batches = [
|
121 |
-
shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size]
|
122 |
-
for b in range(n_batch)
|
123 |
-
]
|
124 |
-
shuffle(batches)
|
125 |
-
indices = list(itertools.chain(*batches))
|
126 |
-
else:
|
127 |
-
# type: ignore[arg-type]
|
128 |
-
indices = list(range(len(self.dataset)))
|
129 |
-
|
130 |
-
if not self.drop_last:
|
131 |
-
# add extra samples to make it evenly divisible
|
132 |
-
padding_size = self.total_size - len(indices)
|
133 |
-
if padding_size <= len(indices):
|
134 |
-
indices += indices[:padding_size]
|
135 |
-
else:
|
136 |
-
indices += (indices * math.ceil(padding_size / len(indices)))[
|
137 |
-
:padding_size
|
138 |
-
]
|
139 |
-
else:
|
140 |
-
# remove tail of data to make it evenly divisible.
|
141 |
-
indices = indices[: self.total_size]
|
142 |
-
assert len(indices) == self.total_size
|
143 |
-
|
144 |
-
# subsample
|
145 |
-
indices = indices[self.rank : self.total_size : self.num_replicas]
|
146 |
-
assert len(indices) == self.num_samples
|
147 |
-
|
148 |
-
return iter(indices)
|
149 |
-
|
150 |
-
def __len__(self) -> int:
|
151 |
-
return self.num_samples
|
152 |
-
|
153 |
-
def set_epoch(self, epoch: int) -> None:
|
154 |
-
r"""
|
155 |
-
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
156 |
-
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
157 |
-
sampler will yield the same ordering.
|
158 |
-
|
159 |
-
Args:
|
160 |
-
epoch (int): Epoch number.
|
161 |
-
"""
|
162 |
-
self.epoch = epoch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/data/data_module.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/data_module.py
|
2 |
-
from pytorch_lightning import LightningDataModule
|
3 |
-
from AR.data.bucket_sampler import DistributedBucketSampler
|
4 |
-
from AR.data.dataset import Text2SemanticDataset
|
5 |
-
from torch.utils.data import DataLoader
|
6 |
-
|
7 |
-
|
8 |
-
class Text2SemanticDataModule(LightningDataModule):
|
9 |
-
def __init__(
|
10 |
-
self,
|
11 |
-
config,
|
12 |
-
train_semantic_path,
|
13 |
-
train_phoneme_path,
|
14 |
-
dev_semantic_path=None,
|
15 |
-
dev_phoneme_path=None,
|
16 |
-
):
|
17 |
-
super().__init__()
|
18 |
-
self.config = config
|
19 |
-
self.train_semantic_path = train_semantic_path
|
20 |
-
self.train_phoneme_path = train_phoneme_path
|
21 |
-
self.dev_semantic_path = dev_semantic_path
|
22 |
-
self.dev_phoneme_path = dev_phoneme_path
|
23 |
-
self.num_workers = self.config["data"]["num_workers"]
|
24 |
-
|
25 |
-
def prepare_data(self):
|
26 |
-
pass
|
27 |
-
|
28 |
-
def setup(self, stage=None, output_logs=False):
|
29 |
-
self._train_dataset = Text2SemanticDataset(
|
30 |
-
phoneme_path=self.train_phoneme_path,
|
31 |
-
semantic_path=self.train_semantic_path,
|
32 |
-
max_sec=self.config["data"]["max_sec"],
|
33 |
-
pad_val=self.config["data"]["pad_val"],
|
34 |
-
)
|
35 |
-
self._dev_dataset = self._train_dataset
|
36 |
-
# self._dev_dataset = Text2SemanticDataset(
|
37 |
-
# phoneme_path=self.dev_phoneme_path,
|
38 |
-
# semantic_path=self.dev_semantic_path,
|
39 |
-
# max_sample=self.config['data']['max_eval_sample'],
|
40 |
-
# max_sec=self.config['data']['max_sec'],
|
41 |
-
# pad_val=self.config['data']['pad_val'])
|
42 |
-
|
43 |
-
def train_dataloader(self):
|
44 |
-
batch_size = max(min(self.config["train"]["batch_size"],len(self._train_dataset)//4),1)#防止不保存
|
45 |
-
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
46 |
-
return DataLoader(
|
47 |
-
self._train_dataset,
|
48 |
-
batch_size=batch_size,
|
49 |
-
sampler=sampler,
|
50 |
-
collate_fn=self._train_dataset.collate,
|
51 |
-
num_workers=self.num_workers,
|
52 |
-
persistent_workers=True,
|
53 |
-
prefetch_factor=16,
|
54 |
-
)
|
55 |
-
|
56 |
-
def val_dataloader(self):
|
57 |
-
return DataLoader(
|
58 |
-
self._dev_dataset,
|
59 |
-
batch_size=1,
|
60 |
-
shuffle=False,
|
61 |
-
collate_fn=self._train_dataset.collate,
|
62 |
-
num_workers=max(self.num_workers, 12),
|
63 |
-
persistent_workers=True,
|
64 |
-
prefetch_factor=16,
|
65 |
-
)
|
66 |
-
|
67 |
-
# 这个会使用到嘛?
|
68 |
-
def test_dataloader(self):
|
69 |
-
return DataLoader(
|
70 |
-
self._dev_dataset,
|
71 |
-
batch_size=1,
|
72 |
-
shuffle=False,
|
73 |
-
collate_fn=self._train_dataset.collate,
|
74 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/data/dataset.py
DELETED
@@ -1,320 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/t2s_dataset.py
|
2 |
-
import pdb
|
3 |
-
import sys
|
4 |
-
|
5 |
-
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
6 |
-
import traceback, os
|
7 |
-
from typing import Dict
|
8 |
-
from typing import List
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import pandas as pd
|
12 |
-
import torch, json
|
13 |
-
from torch.utils.data import DataLoader
|
14 |
-
from torch.utils.data import Dataset
|
15 |
-
from transformers import AutoTokenizer
|
16 |
-
|
17 |
-
from text import cleaned_text_to_sequence
|
18 |
-
|
19 |
-
# from config import exp_dir
|
20 |
-
|
21 |
-
|
22 |
-
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
23 |
-
seq = sequences[0]
|
24 |
-
ndim = seq.ndim
|
25 |
-
if axis < 0:
|
26 |
-
axis += ndim
|
27 |
-
dtype = seq.dtype
|
28 |
-
pad_value = dtype.type(pad_value)
|
29 |
-
seq_lengths = [seq.shape[axis] for seq in sequences]
|
30 |
-
max_length = np.max(seq_lengths)
|
31 |
-
|
32 |
-
padded_sequences = []
|
33 |
-
for seq, length in zip(sequences, seq_lengths):
|
34 |
-
padding = (
|
35 |
-
[(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
|
36 |
-
)
|
37 |
-
padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
|
38 |
-
padded_sequences.append(padded_seq)
|
39 |
-
batch = np.stack(padded_sequences)
|
40 |
-
return batch
|
41 |
-
|
42 |
-
|
43 |
-
class Text2SemanticDataset(Dataset):
|
44 |
-
"""dataset class for text tokens to semantic model training."""
|
45 |
-
|
46 |
-
def __init__(
|
47 |
-
self,
|
48 |
-
phoneme_path: str,
|
49 |
-
semantic_path: str,
|
50 |
-
max_sample: int = None,
|
51 |
-
max_sec: int = 100,
|
52 |
-
pad_val: int = 1024,
|
53 |
-
# min value of phoneme/sec
|
54 |
-
min_ps_ratio: int = 3,
|
55 |
-
# max value of phoneme/sec
|
56 |
-
max_ps_ratio: int = 25,
|
57 |
-
) -> None:
|
58 |
-
super().__init__()
|
59 |
-
|
60 |
-
self.semantic_data = pd.read_csv(
|
61 |
-
semantic_path, delimiter="\t", encoding="utf-8"
|
62 |
-
)
|
63 |
-
# get dict
|
64 |
-
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
65 |
-
self.path3 = "%s/3-bert" % (
|
66 |
-
os.path.basename(phoneme_path)
|
67 |
-
) # "%s/3-bert"%exp_dir#bert_dir
|
68 |
-
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
69 |
-
assert os.path.exists(self.path2)
|
70 |
-
assert os.path.exists(self.path6)
|
71 |
-
self.phoneme_data = {}
|
72 |
-
with open(self.path2, "r", encoding="utf8") as f:
|
73 |
-
lines = f.read().strip("\n").split("\n")
|
74 |
-
|
75 |
-
for line in lines:
|
76 |
-
tmp = line.split("\t")
|
77 |
-
if len(tmp) != 4:
|
78 |
-
continue
|
79 |
-
self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
|
80 |
-
|
81 |
-
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
82 |
-
# pad for semantic tokens
|
83 |
-
self.PAD: int = pad_val
|
84 |
-
# self.hz = 25
|
85 |
-
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
86 |
-
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
87 |
-
# self.hz=int(data[:-2])#
|
88 |
-
self.hz = int(os.environ.get("hz", "25hz")[:-2])
|
89 |
-
|
90 |
-
# max seconds of semantic token
|
91 |
-
self.max_sec = max_sec
|
92 |
-
self.min_ps_ratio = min_ps_ratio
|
93 |
-
self.max_ps_ratio = max_ps_ratio
|
94 |
-
|
95 |
-
if max_sample is not None:
|
96 |
-
self.semantic_data = self.semantic_data[:max_sample]
|
97 |
-
|
98 |
-
# {idx: (semantic, phoneme)}
|
99 |
-
# semantic list, phoneme list
|
100 |
-
self.semantic_phoneme = []
|
101 |
-
self.item_names = []
|
102 |
-
|
103 |
-
self.inited = False
|
104 |
-
|
105 |
-
if not self.inited:
|
106 |
-
# 调用初始化函数
|
107 |
-
self.init_batch()
|
108 |
-
self.inited = True
|
109 |
-
del self.semantic_data
|
110 |
-
del self.phoneme_data
|
111 |
-
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
112 |
-
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
113 |
-
|
114 |
-
def init_batch(self):
|
115 |
-
semantic_data_len = len(self.semantic_data)
|
116 |
-
phoneme_data_len = len(self.phoneme_data.keys())
|
117 |
-
print("semantic_data_len:", semantic_data_len)
|
118 |
-
print("phoneme_data_len:", phoneme_data_len)
|
119 |
-
print(self.semantic_data)
|
120 |
-
idx = 0
|
121 |
-
num_not_in = 0
|
122 |
-
num_deleted_bigger = 0
|
123 |
-
num_deleted_ps = 0
|
124 |
-
for i in range(semantic_data_len):
|
125 |
-
# 先依次遍历
|
126 |
-
# get str
|
127 |
-
item_name = self.semantic_data.iloc[i,0]
|
128 |
-
# print(self.phoneme_data)
|
129 |
-
try:
|
130 |
-
phoneme, word2ph, text = self.phoneme_data[item_name]
|
131 |
-
except Exception:
|
132 |
-
traceback.print_exc()
|
133 |
-
# print(f"{item_name} not in self.phoneme_data !")
|
134 |
-
num_not_in += 1
|
135 |
-
continue
|
136 |
-
|
137 |
-
semantic_str = self.semantic_data.iloc[i,1]
|
138 |
-
# get token list
|
139 |
-
semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
|
140 |
-
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
141 |
-
# 过滤掉太长的样本
|
142 |
-
if (
|
143 |
-
len(semantic_ids) > self.max_sec * self.hz
|
144 |
-
): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
145 |
-
num_deleted_bigger += 1
|
146 |
-
continue
|
147 |
-
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
148 |
-
phoneme = phoneme.split(" ")
|
149 |
-
|
150 |
-
try:
|
151 |
-
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
152 |
-
except:
|
153 |
-
traceback.print_exc()
|
154 |
-
# print(f"{item_name} not in self.phoneme_data !")
|
155 |
-
num_not_in += 1
|
156 |
-
continue
|
157 |
-
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
158 |
-
if (
|
159 |
-
len(phoneme_ids) > self.max_sec * self.hz / 2.5
|
160 |
-
): ###########2:改为恒定限制为semantic/2.5就行
|
161 |
-
num_deleted_ps += 1
|
162 |
-
continue
|
163 |
-
# if len(semantic_ids) > 1000:###########3
|
164 |
-
# num_deleted_bigger += 1
|
165 |
-
# continue
|
166 |
-
|
167 |
-
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
168 |
-
|
169 |
-
if (
|
170 |
-
ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
|
171 |
-
): ##########4#3~25#每秒多少个phone
|
172 |
-
num_deleted_ps += 1
|
173 |
-
# print(item_name)
|
174 |
-
continue
|
175 |
-
|
176 |
-
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
177 |
-
idx += 1
|
178 |
-
self.item_names.append(item_name)
|
179 |
-
|
180 |
-
min_num = 100 # 20直接不补#30补了也不存ckpt
|
181 |
-
leng = len(self.semantic_phoneme)
|
182 |
-
if leng < min_num:
|
183 |
-
tmp1 = self.semantic_phoneme
|
184 |
-
tmp2 = self.item_names
|
185 |
-
self.semantic_phoneme = []
|
186 |
-
self.item_names = []
|
187 |
-
for _ in range(max(2, int(min_num / leng))):
|
188 |
-
self.semantic_phoneme += tmp1
|
189 |
-
self.item_names += tmp2
|
190 |
-
if num_not_in > 0:
|
191 |
-
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
192 |
-
if num_deleted_bigger > 0:
|
193 |
-
print(
|
194 |
-
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
|
195 |
-
)
|
196 |
-
if num_deleted_ps > 0:
|
197 |
-
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
|
198 |
-
print(
|
199 |
-
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
|
200 |
-
)
|
201 |
-
"""
|
202 |
-
there are 31 semantic datas not in phoneme datas
|
203 |
-
deleted 34 audios who's duration are bigger than 54 seconds
|
204 |
-
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
205 |
-
dataset.__len__(): 366463
|
206 |
-
|
207 |
-
"""
|
208 |
-
# 345410 for LibriTTS
|
209 |
-
print("dataset.__len__():", self.__len__())
|
210 |
-
|
211 |
-
def __get_item_names__(self) -> List[str]:
|
212 |
-
return self.item_names
|
213 |
-
|
214 |
-
def __len__(self) -> int:
|
215 |
-
return len(self.semantic_phoneme)
|
216 |
-
|
217 |
-
def __getitem__(self, idx: int) -> Dict:
|
218 |
-
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
|
219 |
-
item_name = self.item_names[idx]
|
220 |
-
phoneme_ids_len = len(phoneme_ids)
|
221 |
-
# semantic tokens target
|
222 |
-
semantic_ids_len = len(semantic_ids)
|
223 |
-
|
224 |
-
flag = 0
|
225 |
-
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
226 |
-
if os.path.exists(path_bert) == True:
|
227 |
-
bert_feature = torch.load(path_bert, map_location="cpu")
|
228 |
-
else:
|
229 |
-
flag = 1
|
230 |
-
if flag == 1:
|
231 |
-
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
232 |
-
bert_feature = None
|
233 |
-
else:
|
234 |
-
assert bert_feature.shape[-1] == len(phoneme_ids)
|
235 |
-
return {
|
236 |
-
"idx": idx,
|
237 |
-
"phoneme_ids": phoneme_ids,
|
238 |
-
"phoneme_ids_len": phoneme_ids_len,
|
239 |
-
"semantic_ids": semantic_ids,
|
240 |
-
"semantic_ids_len": semantic_ids_len,
|
241 |
-
"bert_feature": bert_feature,
|
242 |
-
}
|
243 |
-
|
244 |
-
def get_sample_length(self, idx: int):
|
245 |
-
semantic_ids = self.semantic_phoneme[idx][0]
|
246 |
-
sec = 1.0 * len(semantic_ids) / self.hz
|
247 |
-
return sec
|
248 |
-
|
249 |
-
def collate(self, examples: List[Dict]) -> Dict:
|
250 |
-
sample_index: List[int] = []
|
251 |
-
phoneme_ids: List[torch.Tensor] = []
|
252 |
-
phoneme_ids_lens: List[int] = []
|
253 |
-
semantic_ids: List[torch.Tensor] = []
|
254 |
-
semantic_ids_lens: List[int] = []
|
255 |
-
# return
|
256 |
-
|
257 |
-
for item in examples:
|
258 |
-
sample_index.append(item["idx"])
|
259 |
-
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
260 |
-
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
|
261 |
-
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
262 |
-
semantic_ids_lens.append(item["semantic_ids_len"])
|
263 |
-
|
264 |
-
# pad 0
|
265 |
-
phoneme_ids = batch_sequences(phoneme_ids)
|
266 |
-
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
|
267 |
-
|
268 |
-
# # convert each batch to torch.tensor
|
269 |
-
phoneme_ids = torch.tensor(phoneme_ids)
|
270 |
-
semantic_ids = torch.tensor(semantic_ids)
|
271 |
-
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
272 |
-
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
273 |
-
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
|
274 |
-
bert_padded.zero_()
|
275 |
-
|
276 |
-
for idx, item in enumerate(examples):
|
277 |
-
bert = item["bert_feature"]
|
278 |
-
if bert != None:
|
279 |
-
bert_padded[idx, :, : bert.shape[-1]] = bert
|
280 |
-
|
281 |
-
return {
|
282 |
-
# List[int]
|
283 |
-
"ids": sample_index,
|
284 |
-
# torch.Tensor (B, max_phoneme_length)
|
285 |
-
"phoneme_ids": phoneme_ids,
|
286 |
-
# torch.Tensor (B)
|
287 |
-
"phoneme_ids_len": phoneme_ids_lens,
|
288 |
-
# torch.Tensor (B, max_semantic_ids_length)
|
289 |
-
"semantic_ids": semantic_ids,
|
290 |
-
# torch.Tensor (B)
|
291 |
-
"semantic_ids_len": semantic_ids_lens,
|
292 |
-
# torch.Tensor (B, 1024, max_phoneme_length)
|
293 |
-
"bert_feature": bert_padded,
|
294 |
-
}
|
295 |
-
|
296 |
-
|
297 |
-
if __name__ == "__main__":
|
298 |
-
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
299 |
-
dataset = Text2SemanticDataset(
|
300 |
-
phoneme_path=root_dir + "phoneme_train.npy",
|
301 |
-
semantic_path=root_dir + "semantic_train.tsv",
|
302 |
-
)
|
303 |
-
|
304 |
-
batch_size = 12
|
305 |
-
dataloader = DataLoader(
|
306 |
-
dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
|
307 |
-
)
|
308 |
-
for i, batch in enumerate(dataloader):
|
309 |
-
if i % 1000 == 0:
|
310 |
-
print(i)
|
311 |
-
# if i == 0:
|
312 |
-
# print('batch["ids"]:', batch["ids"])
|
313 |
-
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
314 |
-
# batch["phoneme_ids"].shape)
|
315 |
-
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
316 |
-
# batch["phoneme_ids_len"].shape)
|
317 |
-
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
318 |
-
# batch["semantic_ids"].shape)
|
319 |
-
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
320 |
-
# batch["semantic_ids_len"].shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/__init__.py
DELETED
File without changes
|
AR/models/t2s_lightning_module.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
2 |
-
import os, sys
|
3 |
-
|
4 |
-
now_dir = os.getcwd()
|
5 |
-
sys.path.append(now_dir)
|
6 |
-
from typing import Dict
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from pytorch_lightning import LightningModule
|
10 |
-
from AR.models.t2s_model import Text2SemanticDecoder
|
11 |
-
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
12 |
-
from AR.modules.optim import ScaledAdam
|
13 |
-
|
14 |
-
|
15 |
-
class Text2SemanticLightningModule(LightningModule):
|
16 |
-
def __init__(self, config, output_dir, is_train=True):
|
17 |
-
super().__init__()
|
18 |
-
self.config = config
|
19 |
-
self.top_k = 3
|
20 |
-
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
21 |
-
pretrained_s1 = config.get("pretrained_s1")
|
22 |
-
if pretrained_s1 and is_train:
|
23 |
-
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
24 |
-
print(
|
25 |
-
self.load_state_dict(
|
26 |
-
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
27 |
-
)
|
28 |
-
)
|
29 |
-
if is_train:
|
30 |
-
self.automatic_optimization = False
|
31 |
-
self.save_hyperparameters()
|
32 |
-
self.eval_dir = output_dir / "eval"
|
33 |
-
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
34 |
-
|
35 |
-
def training_step(self, batch: Dict, batch_idx: int):
|
36 |
-
opt = self.optimizers()
|
37 |
-
scheduler = self.lr_schedulers()
|
38 |
-
loss, acc = self.model.forward(
|
39 |
-
batch["phoneme_ids"],
|
40 |
-
batch["phoneme_ids_len"],
|
41 |
-
batch["semantic_ids"],
|
42 |
-
batch["semantic_ids_len"],
|
43 |
-
batch["bert_feature"],
|
44 |
-
)
|
45 |
-
self.manual_backward(loss)
|
46 |
-
if batch_idx > 0 and batch_idx % 4 == 0:
|
47 |
-
opt.step()
|
48 |
-
opt.zero_grad()
|
49 |
-
scheduler.step()
|
50 |
-
|
51 |
-
self.log(
|
52 |
-
"total_loss",
|
53 |
-
loss,
|
54 |
-
on_step=True,
|
55 |
-
on_epoch=True,
|
56 |
-
prog_bar=True,
|
57 |
-
sync_dist=True,
|
58 |
-
)
|
59 |
-
self.log(
|
60 |
-
"lr",
|
61 |
-
scheduler.get_last_lr()[0],
|
62 |
-
on_epoch=True,
|
63 |
-
prog_bar=True,
|
64 |
-
sync_dist=True,
|
65 |
-
)
|
66 |
-
self.log(
|
67 |
-
f"top_{self.top_k}_acc",
|
68 |
-
acc,
|
69 |
-
on_step=True,
|
70 |
-
on_epoch=True,
|
71 |
-
prog_bar=True,
|
72 |
-
sync_dist=True,
|
73 |
-
)
|
74 |
-
|
75 |
-
def validation_step(self, batch: Dict, batch_idx: int):
|
76 |
-
return
|
77 |
-
|
78 |
-
# # get loss
|
79 |
-
# loss, acc = self.model.forward(
|
80 |
-
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
81 |
-
# batch['semantic_ids'], batch['semantic_ids_len'],
|
82 |
-
# batch['bert_feature']
|
83 |
-
# )
|
84 |
-
#
|
85 |
-
# self.log(
|
86 |
-
# "val_total_loss",
|
87 |
-
# loss,
|
88 |
-
# on_step=True,
|
89 |
-
# on_epoch=True,
|
90 |
-
# prog_bar=True,
|
91 |
-
# sync_dist=True)
|
92 |
-
# self.log(
|
93 |
-
# f"val_top_{self.top_k}_acc",
|
94 |
-
# acc,
|
95 |
-
# on_step=True,
|
96 |
-
# on_epoch=True,
|
97 |
-
# prog_bar=True,
|
98 |
-
# sync_dist=True)
|
99 |
-
#
|
100 |
-
# # get infer output
|
101 |
-
# semantic_len = batch['semantic_ids'].size(1)
|
102 |
-
# prompt_len = min(int(semantic_len * 0.5), 150)
|
103 |
-
# prompt = batch['semantic_ids'][:, :prompt_len]
|
104 |
-
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
105 |
-
# batch['phoneme_ids_len'], prompt,
|
106 |
-
# batch['bert_feature']
|
107 |
-
# )
|
108 |
-
# save_name = f'semantic_toks_{batch_idx}.pt'
|
109 |
-
# save_path = os.path.join(self.eval_dir, save_name)
|
110 |
-
# torch.save(pred_semantic.detach().cpu(), save_path)
|
111 |
-
|
112 |
-
def configure_optimizers(self):
|
113 |
-
model_parameters = self.model.parameters()
|
114 |
-
parameters_names = []
|
115 |
-
parameters_names.append(
|
116 |
-
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
117 |
-
)
|
118 |
-
lm_opt = ScaledAdam(
|
119 |
-
model_parameters,
|
120 |
-
lr=0.01,
|
121 |
-
betas=(0.9, 0.95),
|
122 |
-
clipping_scale=2.0,
|
123 |
-
parameters_names=parameters_names,
|
124 |
-
show_dominant_parameters=False,
|
125 |
-
clipping_update_period=1000,
|
126 |
-
)
|
127 |
-
|
128 |
-
return {
|
129 |
-
"optimizer": lm_opt,
|
130 |
-
"lr_scheduler": {
|
131 |
-
"scheduler": WarmupCosineLRSchedule(
|
132 |
-
lm_opt,
|
133 |
-
init_lr=self.config["optimizer"]["lr_init"],
|
134 |
-
peak_lr=self.config["optimizer"]["lr"],
|
135 |
-
end_lr=self.config["optimizer"]["lr_end"],
|
136 |
-
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
137 |
-
total_steps=self.config["optimizer"]["decay_steps"],
|
138 |
-
)
|
139 |
-
},
|
140 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/t2s_lightning_module_onnx.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
2 |
-
import os, sys
|
3 |
-
|
4 |
-
now_dir = os.getcwd()
|
5 |
-
sys.path.append(now_dir)
|
6 |
-
from typing import Dict
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from pytorch_lightning import LightningModule
|
10 |
-
from AR.models.t2s_model_onnx import Text2SemanticDecoder
|
11 |
-
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
12 |
-
from AR.modules.optim import ScaledAdam
|
13 |
-
|
14 |
-
|
15 |
-
class Text2SemanticLightningModule(LightningModule):
|
16 |
-
def __init__(self, config, output_dir, is_train=True):
|
17 |
-
super().__init__()
|
18 |
-
self.config = config
|
19 |
-
self.top_k = 3
|
20 |
-
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
21 |
-
pretrained_s1 = config.get("pretrained_s1")
|
22 |
-
if pretrained_s1 and is_train:
|
23 |
-
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
24 |
-
print(
|
25 |
-
self.load_state_dict(
|
26 |
-
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
27 |
-
)
|
28 |
-
)
|
29 |
-
if is_train:
|
30 |
-
self.automatic_optimization = False
|
31 |
-
self.save_hyperparameters()
|
32 |
-
self.eval_dir = output_dir / "eval"
|
33 |
-
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
34 |
-
|
35 |
-
def training_step(self, batch: Dict, batch_idx: int):
|
36 |
-
opt = self.optimizers()
|
37 |
-
scheduler = self.lr_schedulers()
|
38 |
-
loss, acc = self.model.forward(
|
39 |
-
batch["phoneme_ids"],
|
40 |
-
batch["phoneme_ids_len"],
|
41 |
-
batch["semantic_ids"],
|
42 |
-
batch["semantic_ids_len"],
|
43 |
-
batch["bert_feature"],
|
44 |
-
)
|
45 |
-
self.manual_backward(loss)
|
46 |
-
if batch_idx > 0 and batch_idx % 4 == 0:
|
47 |
-
opt.step()
|
48 |
-
opt.zero_grad()
|
49 |
-
scheduler.step()
|
50 |
-
|
51 |
-
self.log(
|
52 |
-
"total_loss",
|
53 |
-
loss,
|
54 |
-
on_step=True,
|
55 |
-
on_epoch=True,
|
56 |
-
prog_bar=True,
|
57 |
-
sync_dist=True,
|
58 |
-
)
|
59 |
-
self.log(
|
60 |
-
"lr",
|
61 |
-
scheduler.get_last_lr()[0],
|
62 |
-
on_epoch=True,
|
63 |
-
prog_bar=True,
|
64 |
-
sync_dist=True,
|
65 |
-
)
|
66 |
-
self.log(
|
67 |
-
f"top_{self.top_k}_acc",
|
68 |
-
acc,
|
69 |
-
on_step=True,
|
70 |
-
on_epoch=True,
|
71 |
-
prog_bar=True,
|
72 |
-
sync_dist=True,
|
73 |
-
)
|
74 |
-
|
75 |
-
def validation_step(self, batch: Dict, batch_idx: int):
|
76 |
-
return
|
77 |
-
|
78 |
-
def configure_optimizers(self):
|
79 |
-
model_parameters = self.model.parameters()
|
80 |
-
parameters_names = []
|
81 |
-
parameters_names.append(
|
82 |
-
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
83 |
-
)
|
84 |
-
lm_opt = ScaledAdam(
|
85 |
-
model_parameters,
|
86 |
-
lr=0.01,
|
87 |
-
betas=(0.9, 0.95),
|
88 |
-
clipping_scale=2.0,
|
89 |
-
parameters_names=parameters_names,
|
90 |
-
show_dominant_parameters=False,
|
91 |
-
clipping_update_period=1000,
|
92 |
-
)
|
93 |
-
|
94 |
-
return {
|
95 |
-
"optimizer": lm_opt,
|
96 |
-
"lr_scheduler": {
|
97 |
-
"scheduler": WarmupCosineLRSchedule(
|
98 |
-
lm_opt,
|
99 |
-
init_lr=self.config["optimizer"]["lr_init"],
|
100 |
-
peak_lr=self.config["optimizer"]["lr"],
|
101 |
-
end_lr=self.config["optimizer"]["lr_end"],
|
102 |
-
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
103 |
-
total_steps=self.config["optimizer"]["decay_steps"],
|
104 |
-
)
|
105 |
-
},
|
106 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/t2s_model.py
DELETED
@@ -1,327 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
|
2 |
-
import torch
|
3 |
-
from tqdm import tqdm
|
4 |
-
|
5 |
-
from AR.models.utils import make_pad_mask
|
6 |
-
from AR.models.utils import (
|
7 |
-
topk_sampling,
|
8 |
-
sample,
|
9 |
-
logits_to_probs,
|
10 |
-
multinomial_sample_one_no_sync,
|
11 |
-
)
|
12 |
-
from AR.modules.embedding import SinePositionalEmbedding
|
13 |
-
from AR.modules.embedding import TokenEmbedding
|
14 |
-
from AR.modules.transformer import LayerNorm
|
15 |
-
from AR.modules.transformer import TransformerEncoder
|
16 |
-
from AR.modules.transformer import TransformerEncoderLayer
|
17 |
-
from torch import nn
|
18 |
-
from torch.nn import functional as F
|
19 |
-
from torchmetrics.classification import MulticlassAccuracy
|
20 |
-
|
21 |
-
default_config = {
|
22 |
-
"embedding_dim": 512,
|
23 |
-
"hidden_dim": 512,
|
24 |
-
"num_head": 8,
|
25 |
-
"num_layers": 12,
|
26 |
-
"num_codebook": 8,
|
27 |
-
"p_dropout": 0.0,
|
28 |
-
"vocab_size": 1024 + 1,
|
29 |
-
"phoneme_vocab_size": 512,
|
30 |
-
"EOS": 1024,
|
31 |
-
}
|
32 |
-
|
33 |
-
|
34 |
-
class Text2SemanticDecoder(nn.Module):
|
35 |
-
def __init__(self, config, norm_first=False, top_k=3):
|
36 |
-
super(Text2SemanticDecoder, self).__init__()
|
37 |
-
self.model_dim = config["model"]["hidden_dim"]
|
38 |
-
self.embedding_dim = config["model"]["embedding_dim"]
|
39 |
-
self.num_head = config["model"]["head"]
|
40 |
-
self.num_layers = config["model"]["n_layer"]
|
41 |
-
self.norm_first = norm_first
|
42 |
-
self.vocab_size = config["model"]["vocab_size"]
|
43 |
-
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
44 |
-
self.p_dropout = config["model"]["dropout"]
|
45 |
-
self.EOS = config["model"]["EOS"]
|
46 |
-
self.norm_first = norm_first
|
47 |
-
assert self.EOS == self.vocab_size - 1
|
48 |
-
# should be same as num of kmeans bin
|
49 |
-
# assert self.EOS == 1024
|
50 |
-
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
51 |
-
self.ar_text_embedding = TokenEmbedding(
|
52 |
-
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
|
53 |
-
)
|
54 |
-
self.ar_text_position = SinePositionalEmbedding(
|
55 |
-
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
56 |
-
)
|
57 |
-
self.ar_audio_embedding = TokenEmbedding(
|
58 |
-
self.embedding_dim, self.vocab_size, self.p_dropout
|
59 |
-
)
|
60 |
-
self.ar_audio_position = SinePositionalEmbedding(
|
61 |
-
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
62 |
-
)
|
63 |
-
|
64 |
-
self.h = TransformerEncoder(
|
65 |
-
TransformerEncoderLayer(
|
66 |
-
d_model=self.model_dim,
|
67 |
-
nhead=self.num_head,
|
68 |
-
dim_feedforward=self.model_dim * 4,
|
69 |
-
dropout=0.1,
|
70 |
-
batch_first=True,
|
71 |
-
norm_first=norm_first,
|
72 |
-
),
|
73 |
-
num_layers=self.num_layers,
|
74 |
-
norm=LayerNorm(self.model_dim) if norm_first else None,
|
75 |
-
)
|
76 |
-
|
77 |
-
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
78 |
-
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
79 |
-
|
80 |
-
self.ar_accuracy_metric = MulticlassAccuracy(
|
81 |
-
self.vocab_size,
|
82 |
-
top_k=top_k,
|
83 |
-
average="micro",
|
84 |
-
multidim_average="global",
|
85 |
-
ignore_index=self.EOS,
|
86 |
-
)
|
87 |
-
|
88 |
-
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
89 |
-
"""
|
90 |
-
x: phoneme_ids
|
91 |
-
y: semantic_ids
|
92 |
-
"""
|
93 |
-
x = self.ar_text_embedding(x)
|
94 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
95 |
-
x = self.ar_text_position(x)
|
96 |
-
x_mask = make_pad_mask(x_lens)
|
97 |
-
|
98 |
-
y_mask = make_pad_mask(y_lens)
|
99 |
-
y_mask_int = y_mask.type(torch.int64)
|
100 |
-
codes = y.type(torch.int64) * (1 - y_mask_int)
|
101 |
-
|
102 |
-
# Training
|
103 |
-
# AR Decoder
|
104 |
-
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
105 |
-
x_len = x_lens.max()
|
106 |
-
y_len = y_lens.max()
|
107 |
-
y_emb = self.ar_audio_embedding(y)
|
108 |
-
y_pos = self.ar_audio_position(y_emb)
|
109 |
-
|
110 |
-
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
111 |
-
ar_xy_padding_mask = xy_padding_mask
|
112 |
-
|
113 |
-
x_attn_mask = F.pad(
|
114 |
-
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
115 |
-
(0, y_len),
|
116 |
-
value=True,
|
117 |
-
)
|
118 |
-
y_attn_mask = F.pad(
|
119 |
-
torch.triu(
|
120 |
-
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
121 |
-
diagonal=1,
|
122 |
-
),
|
123 |
-
(x_len, 0),
|
124 |
-
value=False,
|
125 |
-
)
|
126 |
-
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
127 |
-
bsz, src_len = x.shape[0], x_len + y_len
|
128 |
-
_xy_padding_mask = (
|
129 |
-
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
130 |
-
.expand(-1, self.num_head, -1, -1)
|
131 |
-
.reshape(bsz * self.num_head, 1, src_len)
|
132 |
-
)
|
133 |
-
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
134 |
-
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
135 |
-
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
136 |
-
xy_attn_mask = new_attn_mask
|
137 |
-
# x 和完整的 y 一次性输入模型
|
138 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
139 |
-
xy_dec, _ = self.h(
|
140 |
-
(xy_pos, None),
|
141 |
-
mask=xy_attn_mask,
|
142 |
-
)
|
143 |
-
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
144 |
-
# loss
|
145 |
-
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
146 |
-
loss = F.cross_entropy(logits, targets, reduction="sum")
|
147 |
-
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
148 |
-
return loss, acc
|
149 |
-
|
150 |
-
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
151 |
-
def infer(
|
152 |
-
self,
|
153 |
-
x,
|
154 |
-
x_lens,
|
155 |
-
prompts,
|
156 |
-
bert_feature,
|
157 |
-
top_k: int = -100,
|
158 |
-
early_stop_num: int = -1,
|
159 |
-
temperature: float = 1.0,
|
160 |
-
):
|
161 |
-
x = self.ar_text_embedding(x)
|
162 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
163 |
-
x = self.ar_text_position(x)
|
164 |
-
|
165 |
-
# AR Decoder
|
166 |
-
y = prompts
|
167 |
-
prefix_len = y.shape[1]
|
168 |
-
x_len = x.shape[1]
|
169 |
-
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
170 |
-
stop = False
|
171 |
-
for _ in tqdm(range(1500)):
|
172 |
-
y_emb = self.ar_audio_embedding(y)
|
173 |
-
y_pos = self.ar_audio_position(y_emb)
|
174 |
-
# x 和逐渐增长的 y 一起输入给模型
|
175 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
176 |
-
y_len = y.shape[1]
|
177 |
-
x_attn_mask_pad = F.pad(
|
178 |
-
x_attn_mask,
|
179 |
-
(0, y_len),
|
180 |
-
value=True,
|
181 |
-
)
|
182 |
-
y_attn_mask = F.pad(
|
183 |
-
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
184 |
-
(x_len, 0),
|
185 |
-
value=False,
|
186 |
-
)
|
187 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
188 |
-
y.device
|
189 |
-
)
|
190 |
-
|
191 |
-
xy_dec, _ = self.h(
|
192 |
-
(xy_pos, None),
|
193 |
-
mask=xy_attn_mask,
|
194 |
-
)
|
195 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
196 |
-
samples = topk_sampling(
|
197 |
-
logits, top_k=top_k, top_p=1.0, temperature=temperature
|
198 |
-
)
|
199 |
-
|
200 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
201 |
-
print("use early stop num:", early_stop_num)
|
202 |
-
stop = True
|
203 |
-
|
204 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
205 |
-
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
206 |
-
stop = True
|
207 |
-
if stop:
|
208 |
-
if prompts.shape[1] == y.shape[1]:
|
209 |
-
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
210 |
-
print("bad zero prediction")
|
211 |
-
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
212 |
-
break
|
213 |
-
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
214 |
-
# print(samples.shape)#[1,1]#第一个1是bs
|
215 |
-
# import os
|
216 |
-
# os._exit(2333)
|
217 |
-
y = torch.concat([y, samples], dim=1)
|
218 |
-
return y
|
219 |
-
|
220 |
-
def pad_y_eos(self, y, y_mask_int, eos_id):
|
221 |
-
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
|
222 |
-
y_mask_int, (0, 1), value=1
|
223 |
-
)
|
224 |
-
# 错位
|
225 |
-
return targets[:, :-1], targets[:, 1:]
|
226 |
-
|
227 |
-
def infer_panel(
|
228 |
-
self,
|
229 |
-
x, #####全部文本token
|
230 |
-
x_lens,
|
231 |
-
prompts, ####参考音频token
|
232 |
-
bert_feature,
|
233 |
-
top_k: int = -100,
|
234 |
-
early_stop_num: int = -1,
|
235 |
-
temperature: float = 1.0,
|
236 |
-
):
|
237 |
-
x = self.ar_text_embedding(x)
|
238 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
239 |
-
x = self.ar_text_position(x)
|
240 |
-
|
241 |
-
# AR Decoder
|
242 |
-
y = prompts
|
243 |
-
prefix_len = y.shape[1]
|
244 |
-
x_len = x.shape[1]
|
245 |
-
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
246 |
-
stop = False
|
247 |
-
# print(1111111,self.num_layers)
|
248 |
-
cache = {
|
249 |
-
"all_stage": self.num_layers,
|
250 |
-
"k": [None] * self.num_layers, ###根据配置自己手写
|
251 |
-
"v": [None] * self.num_layers,
|
252 |
-
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
253 |
-
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
254 |
-
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
255 |
-
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
256 |
-
"first_infer": 1,
|
257 |
-
"stage": 0,
|
258 |
-
}
|
259 |
-
for idx in tqdm(range(1500)):
|
260 |
-
if cache["first_infer"] == 1:
|
261 |
-
y_emb = self.ar_audio_embedding(y)
|
262 |
-
else:
|
263 |
-
y_emb = torch.cat(
|
264 |
-
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
265 |
-
)
|
266 |
-
cache["y_emb"] = y_emb
|
267 |
-
y_pos = self.ar_audio_position(y_emb)
|
268 |
-
# x 和逐渐增长的 y 一起输入给模型
|
269 |
-
if cache["first_infer"] == 1:
|
270 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
271 |
-
else:
|
272 |
-
xy_pos = y_pos[:, -1:]
|
273 |
-
y_len = y_pos.shape[1]
|
274 |
-
###以下3个不做缓存
|
275 |
-
if cache["first_infer"] == 1:
|
276 |
-
x_attn_mask_pad = F.pad(
|
277 |
-
x_attn_mask,
|
278 |
-
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
279 |
-
value=True,
|
280 |
-
)
|
281 |
-
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
282 |
-
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
283 |
-
(x_len, 0),
|
284 |
-
value=False,
|
285 |
-
)
|
286 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
287 |
-
y.device
|
288 |
-
)
|
289 |
-
else:
|
290 |
-
###最右边一列(是错的)
|
291 |
-
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
292 |
-
# xy_attn_mask[:,-1]=False
|
293 |
-
###最下面一行(是对的)
|
294 |
-
xy_attn_mask = torch.zeros(
|
295 |
-
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
296 |
-
)
|
297 |
-
# pdb.set_trace()
|
298 |
-
###缓存重头戏
|
299 |
-
# print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
|
300 |
-
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
301 |
-
logits = self.ar_predict_layer(
|
302 |
-
xy_dec[:, -1]
|
303 |
-
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
304 |
-
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
305 |
-
if(idx==0):###第一次跑不能EOS否则没有了
|
306 |
-
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
307 |
-
samples = sample(
|
308 |
-
logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35
|
309 |
-
)[0].unsqueeze(0)
|
310 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
311 |
-
print("use early stop num:", early_stop_num)
|
312 |
-
stop = True
|
313 |
-
|
314 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
315 |
-
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
316 |
-
stop = True
|
317 |
-
if stop:
|
318 |
-
if prompts.shape[1] == y.shape[1]:
|
319 |
-
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
320 |
-
print("bad zero prediction")
|
321 |
-
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
322 |
-
break
|
323 |
-
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
324 |
-
# print(samples.shape)#[1,1]#第一个1是bs
|
325 |
-
y = torch.concat([y, samples], dim=1)
|
326 |
-
cache["first_infer"] = 0
|
327 |
-
return y, idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/t2s_model_onnx.py
DELETED
@@ -1,337 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
|
2 |
-
import torch
|
3 |
-
from tqdm import tqdm
|
4 |
-
|
5 |
-
from AR.modules.embedding_onnx import SinePositionalEmbedding
|
6 |
-
from AR.modules.embedding_onnx import TokenEmbedding
|
7 |
-
from AR.modules.transformer_onnx import LayerNorm
|
8 |
-
from AR.modules.transformer_onnx import TransformerEncoder
|
9 |
-
from AR.modules.transformer_onnx import TransformerEncoderLayer
|
10 |
-
from torch import nn
|
11 |
-
from torch.nn import functional as F
|
12 |
-
from torchmetrics.classification import MulticlassAccuracy
|
13 |
-
|
14 |
-
default_config = {
|
15 |
-
"embedding_dim": 512,
|
16 |
-
"hidden_dim": 512,
|
17 |
-
"num_head": 8,
|
18 |
-
"num_layers": 12,
|
19 |
-
"num_codebook": 8,
|
20 |
-
"p_dropout": 0.0,
|
21 |
-
"vocab_size": 1024 + 1,
|
22 |
-
"phoneme_vocab_size": 512,
|
23 |
-
"EOS": 1024,
|
24 |
-
}
|
25 |
-
|
26 |
-
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
|
27 |
-
|
28 |
-
def logits_to_probs(
|
29 |
-
logits,
|
30 |
-
previous_tokens = None,
|
31 |
-
temperature: float = 1.0,
|
32 |
-
top_k = None,
|
33 |
-
top_p = None,
|
34 |
-
repetition_penalty: float = 1.0,
|
35 |
-
):
|
36 |
-
previous_tokens = previous_tokens.squeeze()
|
37 |
-
if previous_tokens is not None and repetition_penalty != 1.0:
|
38 |
-
previous_tokens = previous_tokens.long()
|
39 |
-
score = torch.gather(logits, dim=0, index=previous_tokens)
|
40 |
-
score = torch.where(
|
41 |
-
score < 0, score * repetition_penalty, score / repetition_penalty
|
42 |
-
)
|
43 |
-
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
44 |
-
|
45 |
-
if top_p is not None and top_p < 1.0:
|
46 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
47 |
-
cum_probs = torch.cumsum(
|
48 |
-
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
49 |
-
)
|
50 |
-
sorted_indices_to_remove = cum_probs > top_p
|
51 |
-
sorted_indices_to_remove[0] = False # keep at least one option
|
52 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
53 |
-
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
54 |
-
)
|
55 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
56 |
-
|
57 |
-
logits = logits / max(temperature, 1e-5)
|
58 |
-
|
59 |
-
if top_k is not None:
|
60 |
-
v, _ = torch.topk(logits, top_k)
|
61 |
-
pivot = v.select(-1, -1).unsqueeze(-1)
|
62 |
-
logits = torch.where(logits < pivot, inf_tensor_value, logits)
|
63 |
-
|
64 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
65 |
-
return probs
|
66 |
-
|
67 |
-
|
68 |
-
def multinomial_sample_one_no_sync(
|
69 |
-
probs_sort
|
70 |
-
): # Does multinomial sampling without a cuda synchronization
|
71 |
-
q = torch.randn_like(probs_sort)
|
72 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
73 |
-
|
74 |
-
|
75 |
-
def sample(
|
76 |
-
logits,
|
77 |
-
previous_tokens,
|
78 |
-
**sampling_kwargs,
|
79 |
-
):
|
80 |
-
probs = logits_to_probs(
|
81 |
-
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
82 |
-
)
|
83 |
-
idx_next = multinomial_sample_one_no_sync(probs)
|
84 |
-
return idx_next, probs
|
85 |
-
|
86 |
-
|
87 |
-
class OnnxEncoder(nn.Module):
|
88 |
-
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
|
89 |
-
super().__init__()
|
90 |
-
self.ar_text_embedding = ar_text_embedding
|
91 |
-
self.bert_proj = bert_proj
|
92 |
-
self.ar_text_position = ar_text_position
|
93 |
-
|
94 |
-
def forward(self, x, bert_feature):
|
95 |
-
x = self.ar_text_embedding(x)
|
96 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
97 |
-
return self.ar_text_position(x)
|
98 |
-
|
99 |
-
|
100 |
-
class T2SFirstStageDecoder(nn.Module):
|
101 |
-
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
|
102 |
-
top_k, early_stop_num, num_layers):
|
103 |
-
super().__init__()
|
104 |
-
self.ar_audio_embedding = ar_audio_embedding
|
105 |
-
self.ar_audio_position = ar_audio_position
|
106 |
-
self.h = h
|
107 |
-
self.ar_predict_layer = ar_predict_layer
|
108 |
-
self.loss_fct = loss_fct
|
109 |
-
self.ar_accuracy_metric = ar_accuracy_metric
|
110 |
-
self.top_k = top_k
|
111 |
-
self.early_stop_num = early_stop_num
|
112 |
-
self.num_layers = num_layers
|
113 |
-
|
114 |
-
def forward(self, x, prompt):
|
115 |
-
y = prompt
|
116 |
-
x_example = x[:,:,0] * 0.0
|
117 |
-
#N, 1, 512
|
118 |
-
cache = {
|
119 |
-
"all_stage": self.num_layers,
|
120 |
-
"k": None,
|
121 |
-
"v": None,
|
122 |
-
"y_emb": None,
|
123 |
-
"first_infer": 1,
|
124 |
-
"stage": 0,
|
125 |
-
}
|
126 |
-
|
127 |
-
y_emb = self.ar_audio_embedding(y)
|
128 |
-
|
129 |
-
cache["y_emb"] = y_emb
|
130 |
-
y_pos = self.ar_audio_position(y_emb)
|
131 |
-
|
132 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
133 |
-
|
134 |
-
y_example = y_pos[:,:,0] * 0.0
|
135 |
-
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
|
136 |
-
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
|
137 |
-
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
|
138 |
-
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
|
139 |
-
)
|
140 |
-
y_attn_mask = y_attn_mask > 0
|
141 |
-
|
142 |
-
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
|
143 |
-
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
|
144 |
-
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
|
145 |
-
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
|
146 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
147 |
-
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
|
148 |
-
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
|
149 |
-
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
|
150 |
-
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
|
151 |
-
|
152 |
-
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
153 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
154 |
-
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
155 |
-
|
156 |
-
y = torch.concat([y, samples], dim=1)
|
157 |
-
|
158 |
-
return y, cache["k"], cache["v"], cache["y_emb"], x_example
|
159 |
-
|
160 |
-
|
161 |
-
class T2SStageDecoder(nn.Module):
|
162 |
-
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
|
163 |
-
top_k, early_stop_num, num_layers):
|
164 |
-
super().__init__()
|
165 |
-
self.ar_audio_embedding = ar_audio_embedding
|
166 |
-
self.ar_audio_position = ar_audio_position
|
167 |
-
self.h = h
|
168 |
-
self.ar_predict_layer = ar_predict_layer
|
169 |
-
self.loss_fct = loss_fct
|
170 |
-
self.ar_accuracy_metric = ar_accuracy_metric
|
171 |
-
self.top_k = top_k
|
172 |
-
self.early_stop_num = early_stop_num
|
173 |
-
self.num_layers = num_layers
|
174 |
-
|
175 |
-
def forward(self, y, k, v, y_emb, x_example):
|
176 |
-
cache = {
|
177 |
-
"all_stage": self.num_layers,
|
178 |
-
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
|
179 |
-
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
|
180 |
-
"y_emb": y_emb,
|
181 |
-
"first_infer": 0,
|
182 |
-
"stage": 0,
|
183 |
-
}
|
184 |
-
|
185 |
-
y_emb = torch.cat(
|
186 |
-
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
187 |
-
)
|
188 |
-
cache["y_emb"] = y_emb
|
189 |
-
y_pos = self.ar_audio_position(y_emb)
|
190 |
-
|
191 |
-
xy_pos = y_pos[:, -1:]
|
192 |
-
|
193 |
-
y_example = y_pos[:,:,0] * 0.0
|
194 |
-
|
195 |
-
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
|
196 |
-
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
|
197 |
-
|
198 |
-
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
199 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
200 |
-
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
201 |
-
|
202 |
-
y = torch.concat([y, samples], dim=1)
|
203 |
-
|
204 |
-
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
|
205 |
-
|
206 |
-
|
207 |
-
class Text2SemanticDecoder(nn.Module):
|
208 |
-
def __init__(self, config, norm_first=False, top_k=3):
|
209 |
-
super(Text2SemanticDecoder, self).__init__()
|
210 |
-
self.model_dim = config["model"]["hidden_dim"]
|
211 |
-
self.embedding_dim = config["model"]["embedding_dim"]
|
212 |
-
self.num_head = config["model"]["head"]
|
213 |
-
self.num_layers = config["model"]["n_layer"]
|
214 |
-
self.norm_first = norm_first
|
215 |
-
self.vocab_size = config["model"]["vocab_size"]
|
216 |
-
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
217 |
-
self.p_dropout = float(config["model"]["dropout"])
|
218 |
-
self.EOS = config["model"]["EOS"]
|
219 |
-
self.norm_first = norm_first
|
220 |
-
assert self.EOS == self.vocab_size - 1
|
221 |
-
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
222 |
-
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
223 |
-
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
224 |
-
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
|
225 |
-
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
226 |
-
self.h = TransformerEncoder(
|
227 |
-
TransformerEncoderLayer(
|
228 |
-
d_model=self.model_dim,
|
229 |
-
nhead=self.num_head,
|
230 |
-
dim_feedforward=self.model_dim * 4,
|
231 |
-
dropout=0.1,
|
232 |
-
batch_first=True,
|
233 |
-
norm_first=norm_first,
|
234 |
-
),
|
235 |
-
num_layers=self.num_layers,
|
236 |
-
norm=LayerNorm(self.model_dim) if norm_first else None,
|
237 |
-
)
|
238 |
-
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
239 |
-
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
240 |
-
self.ar_accuracy_metric = MulticlassAccuracy(
|
241 |
-
self.vocab_size,
|
242 |
-
top_k=top_k,
|
243 |
-
average="micro",
|
244 |
-
multidim_average="global",
|
245 |
-
ignore_index=self.EOS,
|
246 |
-
)
|
247 |
-
self.top_k = torch.LongTensor([1])
|
248 |
-
self.early_stop_num = torch.LongTensor([-1])
|
249 |
-
|
250 |
-
def init_onnx(self):
|
251 |
-
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
|
252 |
-
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
|
253 |
-
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
|
254 |
-
self.num_layers)
|
255 |
-
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
|
256 |
-
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
|
257 |
-
self.num_layers)
|
258 |
-
|
259 |
-
def forward(self, x, prompts, bert_feature):
|
260 |
-
early_stop_num = self.early_stop_num
|
261 |
-
prefix_len = prompts.shape[1]
|
262 |
-
|
263 |
-
x = self.onnx_encoder(x, bert_feature)
|
264 |
-
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
|
265 |
-
|
266 |
-
stop = False
|
267 |
-
for idx in range(1, 1500):
|
268 |
-
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
|
269 |
-
y, k, v, y_emb, stage, logits, samples = enco
|
270 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
271 |
-
stop = True
|
272 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
273 |
-
stop = True
|
274 |
-
if stop:
|
275 |
-
break
|
276 |
-
y[0, -1] = 0
|
277 |
-
return y, idx
|
278 |
-
|
279 |
-
def infer(self, x, prompts, bert_feature):
|
280 |
-
top_k = self.top_k
|
281 |
-
early_stop_num = self.early_stop_num
|
282 |
-
|
283 |
-
x = self.onnx_encoder(x, bert_feature)
|
284 |
-
|
285 |
-
y = prompts
|
286 |
-
prefix_len = y.shape[1]
|
287 |
-
x_len = x.shape[1]
|
288 |
-
x_example = x[:,:,0] * 0.0
|
289 |
-
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
|
290 |
-
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
|
291 |
-
|
292 |
-
stop = False
|
293 |
-
cache = {
|
294 |
-
"all_stage": self.num_layers,
|
295 |
-
"k": [None] * self.num_layers,
|
296 |
-
"v": [None] * self.num_layers,
|
297 |
-
"y_emb": None,
|
298 |
-
"first_infer": 1,
|
299 |
-
"stage": 0,
|
300 |
-
}
|
301 |
-
for idx in range(1500):
|
302 |
-
if cache["first_infer"] == 1:
|
303 |
-
y_emb = self.ar_audio_embedding(y)
|
304 |
-
else:
|
305 |
-
y_emb = torch.cat(
|
306 |
-
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
307 |
-
)
|
308 |
-
cache["y_emb"] = y_emb
|
309 |
-
y_pos = self.ar_audio_position(y_emb)
|
310 |
-
if cache["first_infer"] == 1:
|
311 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
312 |
-
else:
|
313 |
-
xy_pos = y_pos[:, -1:]
|
314 |
-
y_len = y_pos.shape[1]
|
315 |
-
if cache["first_infer"] == 1:
|
316 |
-
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
|
317 |
-
y_attn_mask = F.pad(
|
318 |
-
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
319 |
-
(x_len, 0), value=False
|
320 |
-
)
|
321 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
322 |
-
else:
|
323 |
-
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
|
324 |
-
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
325 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
326 |
-
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
327 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
328 |
-
stop = True
|
329 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
330 |
-
stop = True
|
331 |
-
if stop:
|
332 |
-
if prompts.shape[1] == y.shape[1]:
|
333 |
-
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
334 |
-
break
|
335 |
-
y = torch.concat([y, samples], dim=1)
|
336 |
-
cache["first_infer"] = 0
|
337 |
-
return y, idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/utils.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/utils.py\
|
2 |
-
import torch
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
|
6 |
-
def sequence_mask(length, max_length=None):
|
7 |
-
if max_length is None:
|
8 |
-
max_length = length.max()
|
9 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
10 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
11 |
-
|
12 |
-
|
13 |
-
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
14 |
-
"""
|
15 |
-
Args:
|
16 |
-
lengths:
|
17 |
-
A 1-D tensor containing sentence lengths.
|
18 |
-
max_len:
|
19 |
-
The length of masks.
|
20 |
-
Returns:
|
21 |
-
Return a 2-D bool tensor, where masked positions
|
22 |
-
are filled with `True` and non-masked positions are
|
23 |
-
filled with `False`.
|
24 |
-
|
25 |
-
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
26 |
-
#>>> make_pad_mask(lengths)
|
27 |
-
tensor([[False, True, True, True, True],
|
28 |
-
[False, False, False, True, True],
|
29 |
-
[False, False, True, True, True],
|
30 |
-
[False, False, False, False, False]])
|
31 |
-
"""
|
32 |
-
assert lengths.ndim == 1, lengths.ndim
|
33 |
-
max_len = max(max_len, lengths.max())
|
34 |
-
n = lengths.size(0)
|
35 |
-
seq_range = torch.arange(0, max_len, device=lengths.device)
|
36 |
-
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
37 |
-
|
38 |
-
return expaned_lengths >= lengths.unsqueeze(-1)
|
39 |
-
|
40 |
-
|
41 |
-
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
42 |
-
def top_k_top_p_filtering(
|
43 |
-
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
44 |
-
):
|
45 |
-
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
46 |
-
Args:
|
47 |
-
logits: logits distribution shape (batch size, vocabulary size)
|
48 |
-
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
49 |
-
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
50 |
-
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
51 |
-
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
52 |
-
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
53 |
-
"""
|
54 |
-
if top_k > 0:
|
55 |
-
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
56 |
-
# Remove all tokens with a probability less than the last token of the top-k
|
57 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
58 |
-
logits[indices_to_remove] = filter_value
|
59 |
-
|
60 |
-
if top_p < 1.0:
|
61 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
62 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
63 |
-
|
64 |
-
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
65 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
66 |
-
if min_tokens_to_keep > 1:
|
67 |
-
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
68 |
-
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
69 |
-
# Shift the indices to the right to keep also the first token above the threshold
|
70 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
71 |
-
sorted_indices_to_remove[..., 0] = 0
|
72 |
-
|
73 |
-
# scatter sorted tensors to original indexing
|
74 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
75 |
-
1, sorted_indices, sorted_indices_to_remove
|
76 |
-
)
|
77 |
-
logits[indices_to_remove] = filter_value
|
78 |
-
return logits
|
79 |
-
|
80 |
-
|
81 |
-
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
82 |
-
# temperature: (`optional`) float
|
83 |
-
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
84 |
-
# top_k: (`optional`) int
|
85 |
-
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
86 |
-
# top_p: (`optional`) float
|
87 |
-
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
88 |
-
|
89 |
-
# Temperature (higher temperature => more likely to sample low probability tokens)
|
90 |
-
if temperature != 1.0:
|
91 |
-
logits = logits / temperature
|
92 |
-
# Top-p/top-k filtering
|
93 |
-
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
94 |
-
# Sample
|
95 |
-
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
96 |
-
return token
|
97 |
-
|
98 |
-
|
99 |
-
from typing import Optional, Tuple
|
100 |
-
|
101 |
-
|
102 |
-
def multinomial_sample_one_no_sync(
|
103 |
-
probs_sort,
|
104 |
-
): # Does multinomial sampling without a cuda synchronization
|
105 |
-
q = torch.empty_like(probs_sort).exponential_(1)
|
106 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
107 |
-
|
108 |
-
|
109 |
-
def logits_to_probs(
|
110 |
-
logits,
|
111 |
-
previous_tokens: Optional[torch.Tensor] = None,
|
112 |
-
temperature: float = 1.0,
|
113 |
-
top_k: Optional[int] = None,
|
114 |
-
top_p: Optional[int] = None,
|
115 |
-
repetition_penalty: float = 1.0,
|
116 |
-
):
|
117 |
-
previous_tokens = previous_tokens.squeeze()
|
118 |
-
# print(logits.shape,previous_tokens.shape)
|
119 |
-
# pdb.set_trace()
|
120 |
-
if previous_tokens is not None and repetition_penalty != 1.0:
|
121 |
-
previous_tokens = previous_tokens.long()
|
122 |
-
score = torch.gather(logits, dim=0, index=previous_tokens)
|
123 |
-
score = torch.where(
|
124 |
-
score < 0, score * repetition_penalty, score / repetition_penalty
|
125 |
-
)
|
126 |
-
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
127 |
-
|
128 |
-
if top_p is not None and top_p < 1.0:
|
129 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
130 |
-
cum_probs = torch.cumsum(
|
131 |
-
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
132 |
-
)
|
133 |
-
sorted_indices_to_remove = cum_probs > top_p
|
134 |
-
sorted_indices_to_remove[0] = False # keep at least one option
|
135 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
136 |
-
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
137 |
-
)
|
138 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
139 |
-
|
140 |
-
logits = logits / max(temperature, 1e-5)
|
141 |
-
|
142 |
-
if top_k is not None:
|
143 |
-
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
144 |
-
pivot = v.select(-1, -1).unsqueeze(-1)
|
145 |
-
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
146 |
-
|
147 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
148 |
-
return probs
|
149 |
-
|
150 |
-
|
151 |
-
def sample(
|
152 |
-
logits,
|
153 |
-
previous_tokens: Optional[torch.Tensor] = None,
|
154 |
-
**sampling_kwargs,
|
155 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
156 |
-
probs = logits_to_probs(
|
157 |
-
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
158 |
-
)
|
159 |
-
idx_next = multinomial_sample_one_no_sync(probs)
|
160 |
-
return idx_next, probs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/__init__.py
DELETED
File without changes
|
AR/modules/activation.py
DELETED
@@ -1,428 +0,0 @@
|
|
1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
2 |
-
from typing import Optional
|
3 |
-
from typing import Tuple
|
4 |
-
import torch
|
5 |
-
from torch import Tensor
|
6 |
-
from torch.nn import Linear
|
7 |
-
from torch.nn import Module
|
8 |
-
from torch.nn.init import constant_
|
9 |
-
from torch.nn.init import xavier_normal_
|
10 |
-
from torch.nn.init import xavier_uniform_
|
11 |
-
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
12 |
-
from torch.nn.parameter import Parameter
|
13 |
-
|
14 |
-
from torch.nn import functional as F
|
15 |
-
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
16 |
-
|
17 |
-
F.multi_head_attention_forward = multi_head_attention_forward_patched
|
18 |
-
|
19 |
-
|
20 |
-
class MultiheadAttention(Module):
|
21 |
-
r"""Allows the model to jointly attend to information
|
22 |
-
from different representation subspaces as described in the paper:
|
23 |
-
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
24 |
-
|
25 |
-
Multi-Head Attention is defined as:
|
26 |
-
|
27 |
-
.. math::
|
28 |
-
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
29 |
-
|
30 |
-
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
31 |
-
|
32 |
-
``forward()`` will use a special optimized implementation if all of the following
|
33 |
-
conditions are met:
|
34 |
-
|
35 |
-
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
36 |
-
restriction will be loosened in the future.)
|
37 |
-
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
38 |
-
- training is disabled (using ``.eval()``)
|
39 |
-
- dropout is 0
|
40 |
-
- ``add_bias_kv`` is ``False``
|
41 |
-
- ``add_zero_attn`` is ``False``
|
42 |
-
- ``batch_first`` is ``True`` and the input is batched
|
43 |
-
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
44 |
-
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
45 |
-
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
46 |
-
nor ``attn_mask`` is passed
|
47 |
-
|
48 |
-
If the optimized implementation is in use, a
|
49 |
-
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
50 |
-
``query``/``key``/``value`` to represent padding more efficiently than using a
|
51 |
-
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
52 |
-
will be returned, and an additional speedup proportional to the fraction of the input
|
53 |
-
that is padding can be expected.
|
54 |
-
|
55 |
-
Args:
|
56 |
-
embed_dim: Total dimension of the model.
|
57 |
-
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
58 |
-
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
59 |
-
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
60 |
-
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
61 |
-
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
62 |
-
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
63 |
-
Default: ``False``.
|
64 |
-
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
65 |
-
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
66 |
-
batch_first: If ``True``, then the input and output tensors are provided
|
67 |
-
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
68 |
-
|
69 |
-
Examples::
|
70 |
-
|
71 |
-
>>> # xdoctest: +SKIP
|
72 |
-
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
73 |
-
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
74 |
-
|
75 |
-
"""
|
76 |
-
__constants__ = ["batch_first"]
|
77 |
-
bias_k: Optional[torch.Tensor]
|
78 |
-
bias_v: Optional[torch.Tensor]
|
79 |
-
|
80 |
-
def __init__(
|
81 |
-
self,
|
82 |
-
embed_dim,
|
83 |
-
num_heads,
|
84 |
-
dropout=0.0,
|
85 |
-
bias=True,
|
86 |
-
add_bias_kv=False,
|
87 |
-
add_zero_attn=False,
|
88 |
-
kdim=None,
|
89 |
-
vdim=None,
|
90 |
-
batch_first=False,
|
91 |
-
linear1_cls=Linear,
|
92 |
-
linear2_cls=Linear,
|
93 |
-
device=None,
|
94 |
-
dtype=None,
|
95 |
-
) -> None:
|
96 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
97 |
-
super(MultiheadAttention, self).__init__()
|
98 |
-
self.embed_dim = embed_dim
|
99 |
-
self.kdim = kdim if kdim is not None else embed_dim
|
100 |
-
self.vdim = vdim if vdim is not None else embed_dim
|
101 |
-
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
102 |
-
|
103 |
-
self.num_heads = num_heads
|
104 |
-
self.dropout = dropout
|
105 |
-
self.batch_first = batch_first
|
106 |
-
self.head_dim = embed_dim // num_heads
|
107 |
-
assert (
|
108 |
-
self.head_dim * num_heads == self.embed_dim
|
109 |
-
), "embed_dim must be divisible by num_heads"
|
110 |
-
|
111 |
-
if add_bias_kv:
|
112 |
-
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
113 |
-
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
114 |
-
else:
|
115 |
-
self.bias_k = self.bias_v = None
|
116 |
-
|
117 |
-
if linear1_cls == Linear:
|
118 |
-
if not self._qkv_same_embed_dim:
|
119 |
-
self.q_proj_weight = Parameter(
|
120 |
-
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
121 |
-
)
|
122 |
-
self.k_proj_weight = Parameter(
|
123 |
-
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
124 |
-
)
|
125 |
-
self.v_proj_weight = Parameter(
|
126 |
-
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
127 |
-
)
|
128 |
-
self.register_parameter("in_proj_weight", None)
|
129 |
-
else:
|
130 |
-
self.in_proj_weight = Parameter(
|
131 |
-
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
132 |
-
)
|
133 |
-
self.register_parameter("q_proj_weight", None)
|
134 |
-
self.register_parameter("k_proj_weight", None)
|
135 |
-
self.register_parameter("v_proj_weight", None)
|
136 |
-
|
137 |
-
if bias:
|
138 |
-
self.in_proj_bias = Parameter(
|
139 |
-
torch.empty(3 * embed_dim, **factory_kwargs)
|
140 |
-
)
|
141 |
-
else:
|
142 |
-
self.register_parameter("in_proj_bias", None)
|
143 |
-
self.out_proj = NonDynamicallyQuantizableLinear(
|
144 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
145 |
-
)
|
146 |
-
|
147 |
-
self._reset_parameters()
|
148 |
-
else:
|
149 |
-
if not self._qkv_same_embed_dim:
|
150 |
-
raise NotImplementedError
|
151 |
-
else:
|
152 |
-
self.in_proj_linear = linear1_cls(
|
153 |
-
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
154 |
-
)
|
155 |
-
self.in_proj_weight = self.in_proj_linear.weight
|
156 |
-
|
157 |
-
self.register_parameter("q_proj_weight", None)
|
158 |
-
self.register_parameter("k_proj_weight", None)
|
159 |
-
self.register_parameter("v_proj_weight", None)
|
160 |
-
|
161 |
-
if bias:
|
162 |
-
self.in_proj_bias = self.in_proj_linear.bias
|
163 |
-
else:
|
164 |
-
self.register_parameter("in_proj_bias", None)
|
165 |
-
|
166 |
-
self.out_proj = linear2_cls(
|
167 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
168 |
-
)
|
169 |
-
|
170 |
-
if self.bias_k is not None:
|
171 |
-
xavier_normal_(self.bias_k)
|
172 |
-
if self.bias_v is not None:
|
173 |
-
xavier_normal_(self.bias_v)
|
174 |
-
|
175 |
-
self.add_zero_attn = add_zero_attn
|
176 |
-
|
177 |
-
def _reset_parameters(self):
|
178 |
-
if self._qkv_same_embed_dim:
|
179 |
-
xavier_uniform_(self.in_proj_weight)
|
180 |
-
else:
|
181 |
-
xavier_uniform_(self.q_proj_weight)
|
182 |
-
xavier_uniform_(self.k_proj_weight)
|
183 |
-
xavier_uniform_(self.v_proj_weight)
|
184 |
-
|
185 |
-
if self.in_proj_bias is not None:
|
186 |
-
constant_(self.in_proj_bias, 0.0)
|
187 |
-
constant_(self.out_proj.bias, 0.0)
|
188 |
-
|
189 |
-
if self.bias_k is not None:
|
190 |
-
xavier_normal_(self.bias_k)
|
191 |
-
if self.bias_v is not None:
|
192 |
-
xavier_normal_(self.bias_v)
|
193 |
-
|
194 |
-
def __setstate__(self, state):
|
195 |
-
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
196 |
-
if "_qkv_same_embed_dim" not in state:
|
197 |
-
state["_qkv_same_embed_dim"] = True
|
198 |
-
|
199 |
-
super(MultiheadAttention, self).__setstate__(state)
|
200 |
-
|
201 |
-
def forward(
|
202 |
-
self,
|
203 |
-
query: Tensor,
|
204 |
-
key: Tensor,
|
205 |
-
value: Tensor,
|
206 |
-
key_padding_mask: Optional[Tensor] = None,
|
207 |
-
need_weights: bool = True,
|
208 |
-
attn_mask: Optional[Tensor] = None,
|
209 |
-
average_attn_weights: bool = True,
|
210 |
-
cache=None,
|
211 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
212 |
-
r"""
|
213 |
-
Args:
|
214 |
-
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
215 |
-
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
216 |
-
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
217 |
-
Queries are compared against key-value pairs to produce the output.
|
218 |
-
See "Attention Is All You Need" for more details.
|
219 |
-
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
220 |
-
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
221 |
-
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
222 |
-
See "Attention Is All You Need" for more details.
|
223 |
-
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
224 |
-
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
225 |
-
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
226 |
-
See "Attention Is All You Need" for more details.
|
227 |
-
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
228 |
-
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
229 |
-
Binary and byte masks are supported.
|
230 |
-
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
231 |
-
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
232 |
-
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
233 |
-
Default: ``True``.
|
234 |
-
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
235 |
-
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
236 |
-
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
237 |
-
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
238 |
-
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
239 |
-
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
240 |
-
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
241 |
-
the attention weight.
|
242 |
-
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
243 |
-
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
244 |
-
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
245 |
-
|
246 |
-
Outputs:
|
247 |
-
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
248 |
-
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
249 |
-
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
250 |
-
embedding dimension ``embed_dim``.
|
251 |
-
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
252 |
-
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
253 |
-
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
254 |
-
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
255 |
-
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
256 |
-
|
257 |
-
.. note::
|
258 |
-
`batch_first` argument is ignored for unbatched inputs.
|
259 |
-
"""
|
260 |
-
is_batched = query.dim() == 3
|
261 |
-
if key_padding_mask is not None:
|
262 |
-
_kpm_dtype = key_padding_mask.dtype
|
263 |
-
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
264 |
-
key_padding_mask
|
265 |
-
):
|
266 |
-
raise AssertionError(
|
267 |
-
"only bool and floating types of key_padding_mask are supported"
|
268 |
-
)
|
269 |
-
why_not_fast_path = ""
|
270 |
-
if not is_batched:
|
271 |
-
why_not_fast_path = (
|
272 |
-
f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
273 |
-
)
|
274 |
-
elif query is not key or key is not value:
|
275 |
-
# When lifting this restriction, don't forget to either
|
276 |
-
# enforce that the dtypes all match or test cases where
|
277 |
-
# they don't!
|
278 |
-
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
279 |
-
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
280 |
-
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
281 |
-
elif (
|
282 |
-
self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
|
283 |
-
):
|
284 |
-
# this case will fail anyway, but at least they'll get a useful error message.
|
285 |
-
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
286 |
-
elif self.training:
|
287 |
-
why_not_fast_path = "training is enabled"
|
288 |
-
elif not self.batch_first:
|
289 |
-
why_not_fast_path = "batch_first was not True"
|
290 |
-
elif self.bias_k is not None:
|
291 |
-
why_not_fast_path = "self.bias_k was not None"
|
292 |
-
elif self.bias_v is not None:
|
293 |
-
why_not_fast_path = "self.bias_v was not None"
|
294 |
-
elif self.dropout:
|
295 |
-
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
296 |
-
elif self.add_zero_attn:
|
297 |
-
why_not_fast_path = "add_zero_attn was enabled"
|
298 |
-
elif not self._qkv_same_embed_dim:
|
299 |
-
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
300 |
-
elif attn_mask is not None:
|
301 |
-
why_not_fast_path = "attn_mask was not None"
|
302 |
-
elif query.is_nested and key_padding_mask is not None:
|
303 |
-
why_not_fast_path = (
|
304 |
-
"key_padding_mask is not supported with NestedTensor input"
|
305 |
-
)
|
306 |
-
elif self.num_heads % 2 == 1:
|
307 |
-
why_not_fast_path = "num_heads is odd"
|
308 |
-
elif torch.is_autocast_enabled():
|
309 |
-
why_not_fast_path = "autocast is enabled"
|
310 |
-
|
311 |
-
if not why_not_fast_path:
|
312 |
-
tensor_args = (
|
313 |
-
query,
|
314 |
-
key,
|
315 |
-
value,
|
316 |
-
self.in_proj_weight,
|
317 |
-
self.in_proj_bias,
|
318 |
-
self.out_proj.weight,
|
319 |
-
self.out_proj.bias,
|
320 |
-
)
|
321 |
-
# We have to use list comprehensions below because TorchScript does not support
|
322 |
-
# generator expressions.
|
323 |
-
if torch.overrides.has_torch_function(tensor_args):
|
324 |
-
why_not_fast_path = "some Tensor argument has_torch_function"
|
325 |
-
elif not all(
|
326 |
-
[
|
327 |
-
(x is None or x.is_cuda or "cpu" in str(x.device))
|
328 |
-
for x in tensor_args
|
329 |
-
]
|
330 |
-
):
|
331 |
-
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
332 |
-
elif torch.is_grad_enabled() and any(
|
333 |
-
[x is not None and x.requires_grad for x in tensor_args]
|
334 |
-
):
|
335 |
-
why_not_fast_path = (
|
336 |
-
"grad is enabled and at least one of query or the "
|
337 |
-
"input/output projection weights or biases requires_grad"
|
338 |
-
)
|
339 |
-
if not why_not_fast_path:
|
340 |
-
return torch._native_multi_head_attention(
|
341 |
-
query,
|
342 |
-
key,
|
343 |
-
value,
|
344 |
-
self.embed_dim,
|
345 |
-
self.num_heads,
|
346 |
-
self.in_proj_weight,
|
347 |
-
self.in_proj_bias,
|
348 |
-
self.out_proj.weight,
|
349 |
-
self.out_proj.bias,
|
350 |
-
key_padding_mask if key_padding_mask is not None else attn_mask,
|
351 |
-
need_weights,
|
352 |
-
average_attn_weights,
|
353 |
-
1
|
354 |
-
if key_padding_mask is not None
|
355 |
-
else 0
|
356 |
-
if attn_mask is not None
|
357 |
-
else None,
|
358 |
-
)
|
359 |
-
|
360 |
-
any_nested = query.is_nested or key.is_nested or value.is_nested
|
361 |
-
assert not any_nested, (
|
362 |
-
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
363 |
-
+ f"The fast path was not hit because {why_not_fast_path}"
|
364 |
-
)
|
365 |
-
|
366 |
-
if self.batch_first and is_batched:
|
367 |
-
# make sure that the transpose op does not affect the "is" property
|
368 |
-
if key is value:
|
369 |
-
if query is key:
|
370 |
-
query = key = value = query.transpose(1, 0)
|
371 |
-
else:
|
372 |
-
query, key = [x.transpose(1, 0) for x in (query, key)]
|
373 |
-
value = key
|
374 |
-
else:
|
375 |
-
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
376 |
-
|
377 |
-
if not self._qkv_same_embed_dim:
|
378 |
-
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
379 |
-
query,
|
380 |
-
key,
|
381 |
-
value,
|
382 |
-
self.embed_dim,
|
383 |
-
self.num_heads,
|
384 |
-
self.in_proj_weight,
|
385 |
-
self.in_proj_bias,
|
386 |
-
self.bias_k,
|
387 |
-
self.bias_v,
|
388 |
-
self.add_zero_attn,
|
389 |
-
self.dropout,
|
390 |
-
self.out_proj.weight,
|
391 |
-
self.out_proj.bias,
|
392 |
-
training=self.training,
|
393 |
-
key_padding_mask=key_padding_mask,
|
394 |
-
need_weights=need_weights,
|
395 |
-
attn_mask=attn_mask,
|
396 |
-
use_separate_proj_weight=True,
|
397 |
-
q_proj_weight=self.q_proj_weight,
|
398 |
-
k_proj_weight=self.k_proj_weight,
|
399 |
-
v_proj_weight=self.v_proj_weight,
|
400 |
-
average_attn_weights=average_attn_weights,
|
401 |
-
cache=cache,
|
402 |
-
)
|
403 |
-
else:
|
404 |
-
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
405 |
-
query,
|
406 |
-
key,
|
407 |
-
value,
|
408 |
-
self.embed_dim,
|
409 |
-
self.num_heads,
|
410 |
-
self.in_proj_weight,
|
411 |
-
self.in_proj_bias,
|
412 |
-
self.bias_k,
|
413 |
-
self.bias_v,
|
414 |
-
self.add_zero_attn,
|
415 |
-
self.dropout,
|
416 |
-
self.out_proj.weight,
|
417 |
-
self.out_proj.bias,
|
418 |
-
training=self.training,
|
419 |
-
key_padding_mask=key_padding_mask,
|
420 |
-
need_weights=need_weights,
|
421 |
-
attn_mask=attn_mask,
|
422 |
-
average_attn_weights=average_attn_weights,
|
423 |
-
cache=cache,
|
424 |
-
)
|
425 |
-
if self.batch_first and is_batched:
|
426 |
-
return attn_output.transpose(1, 0), attn_output_weights
|
427 |
-
else:
|
428 |
-
return attn_output, attn_output_weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/activation_onnx.py
DELETED
@@ -1,178 +0,0 @@
|
|
1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
2 |
-
from typing import Optional
|
3 |
-
from typing import Tuple
|
4 |
-
import torch
|
5 |
-
from torch import Tensor
|
6 |
-
from torch.nn import Linear
|
7 |
-
from torch.nn import Module
|
8 |
-
from torch.nn.init import constant_
|
9 |
-
from torch.nn.init import xavier_normal_
|
10 |
-
from torch.nn.init import xavier_uniform_
|
11 |
-
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
12 |
-
from torch.nn.parameter import Parameter
|
13 |
-
|
14 |
-
from torch.nn import functional as F
|
15 |
-
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
|
16 |
-
|
17 |
-
|
18 |
-
class MultiheadAttention(Module):
|
19 |
-
__constants__ = ["batch_first"]
|
20 |
-
bias_k: Optional[torch.Tensor]
|
21 |
-
bias_v: Optional[torch.Tensor]
|
22 |
-
|
23 |
-
def __init__(
|
24 |
-
self,
|
25 |
-
embed_dim,
|
26 |
-
num_heads,
|
27 |
-
dropout=0.0,
|
28 |
-
bias=True,
|
29 |
-
add_bias_kv=False,
|
30 |
-
add_zero_attn=False,
|
31 |
-
kdim=None,
|
32 |
-
vdim=None,
|
33 |
-
batch_first=False,
|
34 |
-
linear1_cls=Linear,
|
35 |
-
linear2_cls=Linear,
|
36 |
-
device=None,
|
37 |
-
dtype=None,
|
38 |
-
) -> None:
|
39 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
40 |
-
super(MultiheadAttention, self).__init__()
|
41 |
-
self.embed_dim = embed_dim
|
42 |
-
self.kdim = kdim if kdim is not None else embed_dim
|
43 |
-
self.vdim = vdim if vdim is not None else embed_dim
|
44 |
-
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
45 |
-
|
46 |
-
self.num_heads = num_heads
|
47 |
-
self.dropout = dropout
|
48 |
-
self.batch_first = batch_first
|
49 |
-
self.head_dim = embed_dim // num_heads
|
50 |
-
assert (
|
51 |
-
self.head_dim * num_heads == self.embed_dim
|
52 |
-
), "embed_dim must be divisible by num_heads"
|
53 |
-
|
54 |
-
if add_bias_kv:
|
55 |
-
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
56 |
-
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
57 |
-
else:
|
58 |
-
self.bias_k = self.bias_v = None
|
59 |
-
|
60 |
-
if linear1_cls == Linear:
|
61 |
-
if not self._qkv_same_embed_dim:
|
62 |
-
self.q_proj_weight = Parameter(
|
63 |
-
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
64 |
-
)
|
65 |
-
self.k_proj_weight = Parameter(
|
66 |
-
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
67 |
-
)
|
68 |
-
self.v_proj_weight = Parameter(
|
69 |
-
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
70 |
-
)
|
71 |
-
self.register_parameter("in_proj_weight", None)
|
72 |
-
else:
|
73 |
-
self.in_proj_weight = Parameter(
|
74 |
-
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
75 |
-
)
|
76 |
-
self.register_parameter("q_proj_weight", None)
|
77 |
-
self.register_parameter("k_proj_weight", None)
|
78 |
-
self.register_parameter("v_proj_weight", None)
|
79 |
-
|
80 |
-
if bias:
|
81 |
-
self.in_proj_bias = Parameter(
|
82 |
-
torch.empty(3 * embed_dim, **factory_kwargs)
|
83 |
-
)
|
84 |
-
else:
|
85 |
-
self.register_parameter("in_proj_bias", None)
|
86 |
-
self.out_proj = NonDynamicallyQuantizableLinear(
|
87 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
88 |
-
)
|
89 |
-
|
90 |
-
self._reset_parameters()
|
91 |
-
else:
|
92 |
-
if not self._qkv_same_embed_dim:
|
93 |
-
raise NotImplementedError
|
94 |
-
else:
|
95 |
-
self.in_proj_linear = linear1_cls(
|
96 |
-
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
97 |
-
)
|
98 |
-
self.in_proj_weight = self.in_proj_linear.weight
|
99 |
-
|
100 |
-
self.register_parameter("q_proj_weight", None)
|
101 |
-
self.register_parameter("k_proj_weight", None)
|
102 |
-
self.register_parameter("v_proj_weight", None)
|
103 |
-
|
104 |
-
if bias:
|
105 |
-
self.in_proj_bias = self.in_proj_linear.bias
|
106 |
-
else:
|
107 |
-
self.register_parameter("in_proj_bias", None)
|
108 |
-
|
109 |
-
self.out_proj = linear2_cls(
|
110 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
111 |
-
)
|
112 |
-
|
113 |
-
if self.bias_k is not None:
|
114 |
-
xavier_normal_(self.bias_k)
|
115 |
-
if self.bias_v is not None:
|
116 |
-
xavier_normal_(self.bias_v)
|
117 |
-
|
118 |
-
self.add_zero_attn = add_zero_attn
|
119 |
-
|
120 |
-
def _reset_parameters(self):
|
121 |
-
if self._qkv_same_embed_dim:
|
122 |
-
xavier_uniform_(self.in_proj_weight)
|
123 |
-
else:
|
124 |
-
xavier_uniform_(self.q_proj_weight)
|
125 |
-
xavier_uniform_(self.k_proj_weight)
|
126 |
-
xavier_uniform_(self.v_proj_weight)
|
127 |
-
|
128 |
-
if self.in_proj_bias is not None:
|
129 |
-
constant_(self.in_proj_bias, 0.0)
|
130 |
-
constant_(self.out_proj.bias, 0.0)
|
131 |
-
|
132 |
-
if self.bias_k is not None:
|
133 |
-
xavier_normal_(self.bias_k)
|
134 |
-
if self.bias_v is not None:
|
135 |
-
xavier_normal_(self.bias_v)
|
136 |
-
|
137 |
-
def __setstate__(self, state):
|
138 |
-
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
139 |
-
if "_qkv_same_embed_dim" not in state:
|
140 |
-
state["_qkv_same_embed_dim"] = True
|
141 |
-
|
142 |
-
super(MultiheadAttention, self).__setstate__(state)
|
143 |
-
|
144 |
-
def forward(
|
145 |
-
self,
|
146 |
-
query: Tensor,
|
147 |
-
key: Tensor,
|
148 |
-
value: Tensor,
|
149 |
-
key_padding_mask: Optional[Tensor] = None,
|
150 |
-
need_weights: bool = True,
|
151 |
-
attn_mask: Optional[Tensor] = None,
|
152 |
-
average_attn_weights: bool = True,
|
153 |
-
cache=None,
|
154 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
155 |
-
any_nested = query.is_nested or key.is_nested or value.is_nested
|
156 |
-
query = key = value = query.transpose(1, 0)
|
157 |
-
attn_output = multi_head_attention_forward_patched(
|
158 |
-
query,
|
159 |
-
key,
|
160 |
-
value,
|
161 |
-
self.embed_dim,
|
162 |
-
self.num_heads,
|
163 |
-
self.in_proj_weight,
|
164 |
-
self.in_proj_bias,
|
165 |
-
self.bias_k,
|
166 |
-
self.bias_v,
|
167 |
-
self.add_zero_attn,
|
168 |
-
self.dropout,
|
169 |
-
self.out_proj.weight,
|
170 |
-
self.out_proj.bias,
|
171 |
-
training=self.training,
|
172 |
-
key_padding_mask=key_padding_mask,
|
173 |
-
need_weights=need_weights,
|
174 |
-
attn_mask=attn_mask,
|
175 |
-
average_attn_weights=average_attn_weights,
|
176 |
-
cache=cache,
|
177 |
-
)
|
178 |
-
return attn_output.transpose(1, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/embedding.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
2 |
-
import math
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
|
7 |
-
|
8 |
-
class TokenEmbedding(nn.Module):
|
9 |
-
def __init__(
|
10 |
-
self,
|
11 |
-
embedding_dim: int,
|
12 |
-
vocab_size: int,
|
13 |
-
dropout: float = 0.0,
|
14 |
-
):
|
15 |
-
super().__init__()
|
16 |
-
|
17 |
-
self.vocab_size = vocab_size
|
18 |
-
self.embedding_dim = embedding_dim
|
19 |
-
|
20 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
21 |
-
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
22 |
-
|
23 |
-
@property
|
24 |
-
def weight(self) -> torch.Tensor:
|
25 |
-
return self.word_embeddings.weight
|
26 |
-
|
27 |
-
def embedding(self, index: int) -> torch.Tensor:
|
28 |
-
return self.word_embeddings.weight[index : index + 1]
|
29 |
-
|
30 |
-
def forward(self, x: torch.Tensor):
|
31 |
-
x = self.word_embeddings(x)
|
32 |
-
x = self.dropout(x)
|
33 |
-
return x
|
34 |
-
|
35 |
-
|
36 |
-
class SinePositionalEmbedding(nn.Module):
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
embedding_dim: int,
|
40 |
-
dropout: float = 0.0,
|
41 |
-
scale: bool = False,
|
42 |
-
alpha: bool = False,
|
43 |
-
):
|
44 |
-
super().__init__()
|
45 |
-
self.embedding_dim = embedding_dim
|
46 |
-
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
47 |
-
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
48 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
49 |
-
|
50 |
-
self.reverse = False
|
51 |
-
self.pe = None
|
52 |
-
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
53 |
-
|
54 |
-
def extend_pe(self, x):
|
55 |
-
"""Reset the positional encodings."""
|
56 |
-
if self.pe is not None:
|
57 |
-
if self.pe.size(1) >= x.size(1):
|
58 |
-
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
59 |
-
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
60 |
-
return
|
61 |
-
pe = torch.zeros(x.size(1), self.embedding_dim)
|
62 |
-
if self.reverse:
|
63 |
-
position = torch.arange(
|
64 |
-
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
65 |
-
).unsqueeze(1)
|
66 |
-
else:
|
67 |
-
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
68 |
-
div_term = torch.exp(
|
69 |
-
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
|
70 |
-
* -(math.log(10000.0) / self.embedding_dim)
|
71 |
-
)
|
72 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
73 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
74 |
-
pe = pe.unsqueeze(0)
|
75 |
-
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
76 |
-
|
77 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
78 |
-
self.extend_pe(x)
|
79 |
-
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
80 |
-
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
81 |
-
return self.dropout(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/embedding_onnx.py
DELETED
@@ -1,63 +0,0 @@
|
|
1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
2 |
-
import math
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
|
7 |
-
|
8 |
-
class TokenEmbedding(nn.Module):
|
9 |
-
def __init__(
|
10 |
-
self,
|
11 |
-
embedding_dim: int,
|
12 |
-
vocab_size: int,
|
13 |
-
dropout: float = 0.0,
|
14 |
-
):
|
15 |
-
super().__init__()
|
16 |
-
|
17 |
-
self.vocab_size = vocab_size
|
18 |
-
self.embedding_dim = embedding_dim
|
19 |
-
|
20 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
21 |
-
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
22 |
-
|
23 |
-
@property
|
24 |
-
def weight(self) -> torch.Tensor:
|
25 |
-
return self.word_embeddings.weight
|
26 |
-
|
27 |
-
def embedding(self, index: int) -> torch.Tensor:
|
28 |
-
return self.word_embeddings.weight[index : index + 1]
|
29 |
-
|
30 |
-
def forward(self, x: torch.Tensor):
|
31 |
-
x = self.word_embeddings(x)
|
32 |
-
x = self.dropout(x)
|
33 |
-
return x
|
34 |
-
|
35 |
-
|
36 |
-
class SinePositionalEmbedding(nn.Module):
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
embedding_dim: int,
|
40 |
-
dropout: float = 0.0,
|
41 |
-
scale: bool = False,
|
42 |
-
alpha: bool = False,
|
43 |
-
):
|
44 |
-
super().__init__()
|
45 |
-
self.embedding_dim = embedding_dim
|
46 |
-
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
47 |
-
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
48 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
49 |
-
self.reverse = False
|
50 |
-
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
51 |
-
|
52 |
-
def extend_pe(self, x):
|
53 |
-
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
|
54 |
-
scpe = (position * self.div_term).unsqueeze(0)
|
55 |
-
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
|
56 |
-
pe = pe.contiguous().view(1, -1, self.embedding_dim)
|
57 |
-
return pe
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
60 |
-
pe = self.extend_pe(x)
|
61 |
-
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
62 |
-
output = output * self.x_scale + self.alpha * pe
|
63 |
-
return self.dropout(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/lr_schedulers.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/lr_schedulers.py
|
2 |
-
import math
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from matplotlib import pyplot as plt
|
6 |
-
from torch import nn
|
7 |
-
from torch.optim import Adam
|
8 |
-
|
9 |
-
|
10 |
-
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
11 |
-
"""
|
12 |
-
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
13 |
-
"""
|
14 |
-
|
15 |
-
def __init__(
|
16 |
-
self,
|
17 |
-
optimizer,
|
18 |
-
init_lr,
|
19 |
-
peak_lr,
|
20 |
-
end_lr,
|
21 |
-
warmup_steps=10000,
|
22 |
-
total_steps=400000,
|
23 |
-
current_step=0,
|
24 |
-
):
|
25 |
-
self.init_lr = init_lr
|
26 |
-
self.peak_lr = peak_lr
|
27 |
-
self.end_lr = end_lr
|
28 |
-
self.optimizer = optimizer
|
29 |
-
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
30 |
-
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
31 |
-
self._current_step = current_step
|
32 |
-
self.lr = init_lr
|
33 |
-
self.warmup_steps = warmup_steps
|
34 |
-
self.total_steps = total_steps
|
35 |
-
self._last_lr = [self.lr]
|
36 |
-
|
37 |
-
def set_lr(self, lr):
|
38 |
-
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
39 |
-
for g in self.optimizer.param_groups:
|
40 |
-
# g['lr'] = lr
|
41 |
-
g["lr"] = self.end_lr ###锁定用线性
|
42 |
-
|
43 |
-
def step(self):
|
44 |
-
if self._current_step < self.warmup_steps:
|
45 |
-
lr = self.init_lr + self._warmup_rate * self._current_step
|
46 |
-
|
47 |
-
elif self._current_step > self.total_steps:
|
48 |
-
lr = self.end_lr
|
49 |
-
|
50 |
-
else:
|
51 |
-
decay_ratio = (self._current_step - self.warmup_steps) / (
|
52 |
-
self.total_steps - self.warmup_steps
|
53 |
-
)
|
54 |
-
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
55 |
-
raise RuntimeError(
|
56 |
-
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
|
57 |
-
)
|
58 |
-
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
59 |
-
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
60 |
-
|
61 |
-
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
62 |
-
self.set_lr(lr)
|
63 |
-
self.lr = lr
|
64 |
-
self._current_step += 1
|
65 |
-
return self.lr
|
66 |
-
|
67 |
-
|
68 |
-
if __name__ == "__main__":
|
69 |
-
m = nn.Linear(10, 10)
|
70 |
-
opt = Adam(m.parameters(), lr=1e-4)
|
71 |
-
s = WarmupCosineLRSchedule(
|
72 |
-
opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
|
73 |
-
)
|
74 |
-
lrs = []
|
75 |
-
for i in range(25000):
|
76 |
-
s.step()
|
77 |
-
lrs.append(s.lr)
|
78 |
-
print(s.lr)
|
79 |
-
|
80 |
-
plt.plot(lrs)
|
81 |
-
plt.plot(range(0, 25000), lrs)
|
82 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/optim.py
DELETED
@@ -1,622 +0,0 @@
|
|
1 |
-
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
2 |
-
#
|
3 |
-
# See ../LICENSE for clarification regarding multiple authors
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
import contextlib
|
17 |
-
import logging
|
18 |
-
from collections import defaultdict
|
19 |
-
from typing import List
|
20 |
-
from typing import Tuple
|
21 |
-
|
22 |
-
import torch
|
23 |
-
from torch import Tensor
|
24 |
-
from torch.optim import Optimizer
|
25 |
-
|
26 |
-
|
27 |
-
class BatchedOptimizer(Optimizer):
|
28 |
-
"""
|
29 |
-
This class adds to class Optimizer the capability to optimize parameters in batches:
|
30 |
-
it will stack the parameters and their grads for you so the optimizer can work
|
31 |
-
on tensors with an extra leading dimension. This is intended for speed with GPUs,
|
32 |
-
as it reduces the number of kernels launched in the optimizer.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
params:
|
36 |
-
"""
|
37 |
-
|
38 |
-
def __init__(self, params, defaults):
|
39 |
-
super(BatchedOptimizer, self).__init__(params, defaults)
|
40 |
-
|
41 |
-
@contextlib.contextmanager
|
42 |
-
def batched_params(self, param_group, group_params_names):
|
43 |
-
"""
|
44 |
-
This function returns (technically, yields) a list of
|
45 |
-
of tuples (p, state), where
|
46 |
-
p is a `fake` parameter that is stacked (over axis 0) from real parameters
|
47 |
-
that share the same shape, and its gradient is also stacked;
|
48 |
-
`state` is the state corresponding to this batch of parameters
|
49 |
-
(it will be physically located in the "state" for one of the real
|
50 |
-
parameters, the last one that has any particular shape and dtype).
|
51 |
-
|
52 |
-
This function is decorated as a context manager so that it can
|
53 |
-
write parameters back to their "real" locations.
|
54 |
-
|
55 |
-
The idea is, instead of doing:
|
56 |
-
<code>
|
57 |
-
for p in group["params"]:
|
58 |
-
state = self.state[p]
|
59 |
-
...
|
60 |
-
</code>
|
61 |
-
you can do:
|
62 |
-
<code>
|
63 |
-
with self.batched_params(group["params"]) as batches:
|
64 |
-
for p, state, p_names in batches:
|
65 |
-
...
|
66 |
-
</code>
|
67 |
-
|
68 |
-
Args:
|
69 |
-
group: a parameter group, which is a list of parameters; should be
|
70 |
-
one of self.param_groups.
|
71 |
-
group_params_names: name for each parameter in group,
|
72 |
-
which is List[str].
|
73 |
-
"""
|
74 |
-
batches = defaultdict(
|
75 |
-
list
|
76 |
-
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
77 |
-
batches_names = defaultdict(
|
78 |
-
list
|
79 |
-
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
80 |
-
|
81 |
-
assert len(param_group) == len(group_params_names)
|
82 |
-
for p, named_p in zip(param_group, group_params_names):
|
83 |
-
key = (str(p.dtype), *p.shape)
|
84 |
-
batches[key].append(p)
|
85 |
-
batches_names[key].append(named_p)
|
86 |
-
|
87 |
-
batches_names_keys = list(batches_names.keys())
|
88 |
-
sorted_idx = sorted(
|
89 |
-
range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
90 |
-
batches_names = [
|
91 |
-
batches_names[batches_names_keys[idx]] for idx in sorted_idx
|
92 |
-
]
|
93 |
-
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
94 |
-
|
95 |
-
stacked_params_dict = dict()
|
96 |
-
|
97 |
-
# turn batches into a list, in deterministic order.
|
98 |
-
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
|
99 |
-
# one for each batch in `batches`.
|
100 |
-
tuples = []
|
101 |
-
|
102 |
-
for batch, batch_names in zip(batches, batches_names):
|
103 |
-
p = batch[0]
|
104 |
-
# we arbitrarily store the state in the
|
105 |
-
# state corresponding to the 1st parameter in the
|
106 |
-
# group. class Optimizer will take care of saving/loading state.
|
107 |
-
state = self.state[p]
|
108 |
-
p_stacked = torch.stack(batch)
|
109 |
-
grad = torch.stack([
|
110 |
-
torch.zeros_like(p) if p.grad is None else p.grad for p in batch
|
111 |
-
])
|
112 |
-
p_stacked.grad = grad
|
113 |
-
stacked_params_dict[key] = p_stacked
|
114 |
-
tuples.append((p_stacked, state, batch_names))
|
115 |
-
|
116 |
-
yield tuples # <-- calling code will do the actual optimization here!
|
117 |
-
|
118 |
-
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
|
119 |
-
for i, p in enumerate(batch): # batch is list of Parameter
|
120 |
-
p.copy_(stacked_params[i])
|
121 |
-
|
122 |
-
|
123 |
-
class ScaledAdam(BatchedOptimizer):
|
124 |
-
"""
|
125 |
-
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
126 |
-
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
127 |
-
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
128 |
-
param = underlying_param * log_scale.exp())
|
129 |
-
|
130 |
-
|
131 |
-
Args:
|
132 |
-
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
133 |
-
lr: The learning rate. We will typically use a learning rate schedule that starts
|
134 |
-
at 0.03 and decreases over time, i.e. much higher than other common
|
135 |
-
optimizers.
|
136 |
-
clipping_scale: (e.g. 2.0)
|
137 |
-
A scale for gradient-clipping: if specified, the normalized gradients
|
138 |
-
over the whole model will be clipped to have 2-norm equal to
|
139 |
-
`clipping_scale` times the median 2-norm over the most recent period
|
140 |
-
of `clipping_update_period` minibatches. By "normalized gradients",
|
141 |
-
we mean after multiplying by the rms parameter value for this tensor
|
142 |
-
[for non-scalars]; this is appropriate because our update is scaled
|
143 |
-
by this quantity.
|
144 |
-
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
145 |
-
Must satisfy 0 < beta <= beta2 < 1.
|
146 |
-
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
147 |
-
scale of each parameter tensor and scalar parameters of the mode..
|
148 |
-
If each parameter were decomposed
|
149 |
-
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
150 |
-
would be a the scaling factor on the learning rate of p_scale.
|
151 |
-
eps: A general-purpose epsilon to prevent division by zero
|
152 |
-
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
153 |
-
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
154 |
-
parameter tensor to be >= this value)
|
155 |
-
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
156 |
-
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
157 |
-
parameter tensor to be <= this value)
|
158 |
-
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
159 |
-
model has any parameters with numel() == 1).
|
160 |
-
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
161 |
-
of the parameter tensor. This is provided to save a little time
|
162 |
-
in the update.
|
163 |
-
clipping_update_period: if clipping_scale is specified, this is the period
|
164 |
-
"""
|
165 |
-
|
166 |
-
def __init__(
|
167 |
-
self,
|
168 |
-
params,
|
169 |
-
lr=3e-02,
|
170 |
-
clipping_scale=None,
|
171 |
-
betas=(0.9, 0.98),
|
172 |
-
scalar_lr_scale=0.1,
|
173 |
-
eps=1.0e-08,
|
174 |
-
param_min_rms=1.0e-05,
|
175 |
-
param_max_rms=3.0,
|
176 |
-
scalar_max=10.0,
|
177 |
-
size_update_period=4,
|
178 |
-
clipping_update_period=100,
|
179 |
-
parameters_names=None,
|
180 |
-
show_dominant_parameters=True, ):
|
181 |
-
|
182 |
-
assert parameters_names is not None, (
|
183 |
-
"Please prepare parameters_names,"
|
184 |
-
"which is a List[List[str]]. Each List[str] is for a group"
|
185 |
-
"and each str is for a parameter")
|
186 |
-
defaults = dict(
|
187 |
-
lr=lr,
|
188 |
-
clipping_scale=clipping_scale,
|
189 |
-
betas=betas,
|
190 |
-
scalar_lr_scale=scalar_lr_scale,
|
191 |
-
eps=eps,
|
192 |
-
param_min_rms=param_min_rms,
|
193 |
-
param_max_rms=param_max_rms,
|
194 |
-
scalar_max=scalar_max,
|
195 |
-
size_update_period=size_update_period,
|
196 |
-
clipping_update_period=clipping_update_period, )
|
197 |
-
|
198 |
-
super(ScaledAdam, self).__init__(params, defaults)
|
199 |
-
assert len(self.param_groups) == len(parameters_names)
|
200 |
-
self.parameters_names = parameters_names
|
201 |
-
self.show_dominant_parameters = show_dominant_parameters
|
202 |
-
|
203 |
-
def __setstate__(self, state):
|
204 |
-
super(ScaledAdam, self).__setstate__(state)
|
205 |
-
|
206 |
-
@torch.no_grad()
|
207 |
-
def step(self, closure=None):
|
208 |
-
"""Performs a single optimization step.
|
209 |
-
|
210 |
-
Arguments:
|
211 |
-
closure (callable, optional): A closure that reevaluates the model
|
212 |
-
and returns the loss.
|
213 |
-
"""
|
214 |
-
loss = None
|
215 |
-
if closure is not None:
|
216 |
-
with torch.enable_grad():
|
217 |
-
loss = closure()
|
218 |
-
|
219 |
-
batch = True
|
220 |
-
|
221 |
-
for group, group_params_names in zip(self.param_groups,
|
222 |
-
self.parameters_names):
|
223 |
-
|
224 |
-
with self.batched_params(group["params"],
|
225 |
-
group_params_names) as batches:
|
226 |
-
|
227 |
-
# batches is list of pairs (stacked_param, state). stacked_param is like
|
228 |
-
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
229 |
-
# a stacking dim, it is not a real dim.
|
230 |
-
|
231 |
-
if (len(batches[0][1]) ==
|
232 |
-
0): # if len(first state) == 0: not yet initialized
|
233 |
-
clipping_scale = 1
|
234 |
-
else:
|
235 |
-
clipping_scale = self._get_clipping_scale(group, batches)
|
236 |
-
|
237 |
-
for p, state, _ in batches:
|
238 |
-
# Perform optimization step.
|
239 |
-
# grad is not going to be None, we handled that when creating the batches.
|
240 |
-
grad = p.grad
|
241 |
-
if grad.is_sparse:
|
242 |
-
raise RuntimeError(
|
243 |
-
"ScaledAdam optimizer does not support sparse gradients"
|
244 |
-
)
|
245 |
-
# State initialization
|
246 |
-
if len(state) == 0:
|
247 |
-
self._init_state(group, p, state)
|
248 |
-
|
249 |
-
self._step_one_batch(group, p, state, clipping_scale)
|
250 |
-
|
251 |
-
return loss
|
252 |
-
|
253 |
-
def _init_state(self, group: dict, p: Tensor, state: dict):
|
254 |
-
"""
|
255 |
-
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
|
256 |
-
is actually the batch dimension, corresponding to batched-together
|
257 |
-
parameters of a given shape.
|
258 |
-
|
259 |
-
|
260 |
-
Args:
|
261 |
-
group: Dict to look up configuration values.
|
262 |
-
p: The parameter that we are initializing the state for
|
263 |
-
state: Dict from string to whatever state we are initializing
|
264 |
-
"""
|
265 |
-
size_update_period = group["size_update_period"]
|
266 |
-
|
267 |
-
state["step"] = 0
|
268 |
-
|
269 |
-
kwargs = {"device": p.device, "dtype": p.dtype}
|
270 |
-
|
271 |
-
# 'delta' implements conventional momentum. There are
|
272 |
-
# several different kinds of update going on, so rather than
|
273 |
-
# compute "exp_avg" like in Adam, we store and decay a
|
274 |
-
# parameter-change "delta", which combines all forms of
|
275 |
-
# update. this is equivalent to how it's done in Adam,
|
276 |
-
# except for the first few steps.
|
277 |
-
state["delta"] = torch.zeros_like(
|
278 |
-
p, memory_format=torch.preserve_format)
|
279 |
-
|
280 |
-
batch_size = p.shape[0]
|
281 |
-
numel = p.numel() // batch_size
|
282 |
-
numel = p.numel()
|
283 |
-
|
284 |
-
if numel > 1:
|
285 |
-
# "param_rms" just periodically records the scalar root-mean-square value of
|
286 |
-
# the parameter tensor.
|
287 |
-
# it has a shape like (batch_size, 1, 1, 1, 1)
|
288 |
-
param_rms = (
|
289 |
-
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
|
290 |
-
state["param_rms"] = param_rms
|
291 |
-
|
292 |
-
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
|
293 |
-
state["scale_grads"] = torch.zeros(size_update_period,
|
294 |
-
*param_rms.shape, **kwargs)
|
295 |
-
|
296 |
-
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
|
297 |
-
state["exp_avg_sq"] = torch.zeros_like(
|
298 |
-
p, memory_format=torch.preserve_format)
|
299 |
-
|
300 |
-
def _get_clipping_scale(self,
|
301 |
-
group: dict,
|
302 |
-
tuples: List[Tuple[Tensor, dict, List[str]]]
|
303 |
-
) -> float:
|
304 |
-
"""
|
305 |
-
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
306 |
-
by this amount before applying the rest of the update.
|
307 |
-
|
308 |
-
Args:
|
309 |
-
group: the parameter group, an item in self.param_groups
|
310 |
-
tuples: a list of tuples of (param, state, param_names)
|
311 |
-
where param is a batched set of parameters,
|
312 |
-
with a .grad (1st dim is batch dim)
|
313 |
-
and state is the state-dict where optimization parameters are kept.
|
314 |
-
param_names is a List[str] while each str is name for a parameter
|
315 |
-
in batched set of parameters "param".
|
316 |
-
"""
|
317 |
-
assert len(tuples) >= 1
|
318 |
-
clipping_scale = group["clipping_scale"]
|
319 |
-
(first_p, first_state, _) = tuples[0]
|
320 |
-
step = first_state["step"]
|
321 |
-
if clipping_scale is None or step == 0:
|
322 |
-
# no clipping. return early on step == 0 because the other
|
323 |
-
# parameters' state won't have been initialized yet.
|
324 |
-
return 1.0
|
325 |
-
clipping_update_period = group["clipping_update_period"]
|
326 |
-
|
327 |
-
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
328 |
-
for (p, state, param_names) in tuples:
|
329 |
-
grad = p.grad
|
330 |
-
if grad.is_sparse:
|
331 |
-
raise RuntimeError(
|
332 |
-
"ScaledAdam optimizer does not support sparse gradients")
|
333 |
-
if p.numel() == p.shape[0]: # a batch of scalars
|
334 |
-
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
|
335 |
-
else:
|
336 |
-
tot_sumsq += ((grad * state["param_rms"])**2).sum()
|
337 |
-
|
338 |
-
tot_norm = tot_sumsq.sqrt()
|
339 |
-
if "model_norms" not in first_state:
|
340 |
-
first_state["model_norms"] = torch.zeros(
|
341 |
-
clipping_update_period, device=p.device)
|
342 |
-
first_state["model_norms"][step % clipping_update_period] = tot_norm
|
343 |
-
|
344 |
-
if step % clipping_update_period == 0:
|
345 |
-
# Print some stats.
|
346 |
-
# We don't reach here if step == 0 because we would have returned
|
347 |
-
# above.
|
348 |
-
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
|
349 |
-
quartiles = []
|
350 |
-
for n in range(0, 5):
|
351 |
-
index = min(
|
352 |
-
clipping_update_period - 1,
|
353 |
-
(clipping_update_period // 4) * n, )
|
354 |
-
quartiles.append(sorted_norms[index].item())
|
355 |
-
|
356 |
-
median = quartiles[2]
|
357 |
-
threshold = clipping_scale * median
|
358 |
-
first_state["model_norm_threshold"] = threshold
|
359 |
-
percent_clipped = (first_state["num_clipped"] * 100.0 /
|
360 |
-
clipping_update_period
|
361 |
-
if "num_clipped" in first_state else 0.0)
|
362 |
-
first_state["num_clipped"] = 0
|
363 |
-
quartiles = " ".join(["%.3e" % x for x in quartiles])
|
364 |
-
logging.info(
|
365 |
-
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
|
366 |
-
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
|
367 |
-
)
|
368 |
-
|
369 |
-
if step < clipping_update_period:
|
370 |
-
return 1.0 # We have not yet estimated a norm to clip to.
|
371 |
-
else:
|
372 |
-
try:
|
373 |
-
model_norm_threshold = first_state["model_norm_threshold"]
|
374 |
-
except KeyError:
|
375 |
-
logging.info(
|
376 |
-
"Warning: model_norm_threshold not in state: possibly "
|
377 |
-
"you changed config when restarting, adding clipping_scale option?"
|
378 |
-
)
|
379 |
-
return 1.0
|
380 |
-
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
|
381 |
-
if ans < 1.0:
|
382 |
-
first_state["num_clipped"] += 1
|
383 |
-
if ans < 0.1:
|
384 |
-
logging.warn(
|
385 |
-
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
|
386 |
-
)
|
387 |
-
if self.show_dominant_parameters:
|
388 |
-
assert p.shape[0] == len(param_names)
|
389 |
-
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
|
390 |
-
return ans
|
391 |
-
|
392 |
-
def _show_gradient_dominating_parameter(
|
393 |
-
self, tuples: List[Tuple[Tensor, dict, List[str]]],
|
394 |
-
tot_sumsq: Tensor):
|
395 |
-
"""
|
396 |
-
Show information of parameter wihch dominanting tot_sumsq.
|
397 |
-
|
398 |
-
Args:
|
399 |
-
tuples: a list of tuples of (param, state, param_names)
|
400 |
-
where param is a batched set of parameters,
|
401 |
-
with a .grad (1st dim is batch dim)
|
402 |
-
and state is the state-dict where optimization parameters are kept.
|
403 |
-
param_names is a List[str] while each str is name for a parameter
|
404 |
-
in batched set of parameters "param".
|
405 |
-
tot_sumsq: sumsq of all parameters. Though it's could be calculated
|
406 |
-
from tuples, we still pass it to save some time.
|
407 |
-
"""
|
408 |
-
all_sumsq_orig = {}
|
409 |
-
for (p, state, batch_param_names) in tuples:
|
410 |
-
# p is a stacked batch parameters.
|
411 |
-
batch_grad = p.grad
|
412 |
-
if p.numel() == p.shape[0]: # a batch of scalars
|
413 |
-
batch_sumsq_orig = batch_grad**2
|
414 |
-
# Dummpy values used by following `zip` statement.
|
415 |
-
batch_rms_orig = torch.ones(p.shape[0])
|
416 |
-
else:
|
417 |
-
batch_rms_orig = state["param_rms"]
|
418 |
-
batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
|
419 |
-
dim=list(range(1, batch_grad.ndim)))
|
420 |
-
|
421 |
-
for name, sumsq_orig, rms, grad in zip(batch_param_names,
|
422 |
-
batch_sumsq_orig,
|
423 |
-
batch_rms_orig, batch_grad):
|
424 |
-
|
425 |
-
proportion_orig = sumsq_orig / tot_sumsq
|
426 |
-
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
427 |
-
|
428 |
-
assert torch.isclose(
|
429 |
-
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
|
430 |
-
torch.tensor(1.0), )
|
431 |
-
sorted_by_proportion = {
|
432 |
-
k: v
|
433 |
-
for k, v in sorted(
|
434 |
-
all_sumsq_orig.items(),
|
435 |
-
key=lambda item: item[1][0],
|
436 |
-
reverse=True, )
|
437 |
-
}
|
438 |
-
dominant_param_name = next(iter(sorted_by_proportion))
|
439 |
-
(dominant_proportion, dominant_sumsq, dominant_rms,
|
440 |
-
dominant_grad, ) = sorted_by_proportion[dominant_param_name]
|
441 |
-
logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
|
442 |
-
f" with proportion {dominant_proportion:.2f},"
|
443 |
-
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
|
444 |
-
f"={dominant_sumsq:.3e},"
|
445 |
-
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
|
446 |
-
f" orig_rms_sq={(dominant_rms**2).item():.3e}")
|
447 |
-
|
448 |
-
def _step_one_batch(self,
|
449 |
-
group: dict,
|
450 |
-
p: Tensor,
|
451 |
-
state: dict,
|
452 |
-
clipping_scale: float):
|
453 |
-
"""
|
454 |
-
Do the step for one parameter, which is actually going to be a batch of
|
455 |
-
`real` parameters, with dim 0 as the batch dim.
|
456 |
-
Args:
|
457 |
-
group: dict to look up configuration values
|
458 |
-
p: parameter to update (actually multiple parameters stacked together
|
459 |
-
as a batch)
|
460 |
-
state: state-dict for p, to look up the optimizer state
|
461 |
-
"""
|
462 |
-
lr = group["lr"]
|
463 |
-
size_update_period = group["size_update_period"]
|
464 |
-
beta1 = group["betas"][0]
|
465 |
-
|
466 |
-
grad = p.grad
|
467 |
-
if clipping_scale != 1.0:
|
468 |
-
grad = grad * clipping_scale
|
469 |
-
step = state["step"]
|
470 |
-
delta = state["delta"]
|
471 |
-
|
472 |
-
delta.mul_(beta1)
|
473 |
-
batch_size = p.shape[0]
|
474 |
-
numel = p.numel() // batch_size
|
475 |
-
if numel > 1:
|
476 |
-
# Update the size/scale of p, and set param_rms
|
477 |
-
scale_grads = state["scale_grads"]
|
478 |
-
scale_grads[step % size_update_period] = (p * grad).sum(
|
479 |
-
dim=list(range(1, p.ndim)), keepdim=True)
|
480 |
-
if step % size_update_period == size_update_period - 1:
|
481 |
-
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
|
482 |
-
param_rms.copy_((p**2)
|
483 |
-
.mean(dim=list(range(1, p.ndim)), keepdim=True)
|
484 |
-
.sqrt())
|
485 |
-
if step > 0:
|
486 |
-
# self._size_update() learns the overall scale on the
|
487 |
-
# parameter, by shrinking or expanding it.
|
488 |
-
self._size_update(group, scale_grads, p, state)
|
489 |
-
|
490 |
-
if numel == 1:
|
491 |
-
# For parameters with 1 element we just use regular Adam.
|
492 |
-
# Updates delta.
|
493 |
-
self._step_scalar(group, p, state)
|
494 |
-
else:
|
495 |
-
self._step(group, p, state)
|
496 |
-
|
497 |
-
state["step"] = step + 1
|
498 |
-
|
499 |
-
def _size_update(self,
|
500 |
-
group: dict,
|
501 |
-
scale_grads: Tensor,
|
502 |
-
p: Tensor,
|
503 |
-
state: dict) -> None:
|
504 |
-
"""
|
505 |
-
Called only where p.numel() > 1, this updates the scale of the parameter.
|
506 |
-
If we imagine: p = underlying_param * scale.exp(), and we are doing
|
507 |
-
gradient descent on underlying param and on scale, this function does the update
|
508 |
-
on `scale`.
|
509 |
-
|
510 |
-
Args:
|
511 |
-
group: dict to look up configuration values
|
512 |
-
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
|
513 |
-
grads w.r.t. the scales.
|
514 |
-
p: The parameter to update
|
515 |
-
state: The state-dict of p
|
516 |
-
"""
|
517 |
-
|
518 |
-
param_rms = state["param_rms"]
|
519 |
-
beta1, beta2 = group["betas"]
|
520 |
-
size_lr = group["lr"] * group["scalar_lr_scale"]
|
521 |
-
param_min_rms = group["param_min_rms"]
|
522 |
-
param_max_rms = group["param_max_rms"]
|
523 |
-
eps = group["eps"]
|
524 |
-
step = state["step"]
|
525 |
-
batch_size = p.shape[0]
|
526 |
-
|
527 |
-
size_update_period = scale_grads.shape[0]
|
528 |
-
# correct beta2 for the size update period: we will have
|
529 |
-
# faster decay at this level.
|
530 |
-
beta2_corr = beta2**size_update_period
|
531 |
-
|
532 |
-
scale_exp_avg_sq = state[
|
533 |
-
"scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
|
534 |
-
scale_exp_avg_sq.mul_(beta2_corr).add_(
|
535 |
-
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
|
536 |
-
alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
|
537 |
-
|
538 |
-
# The 1st time we reach here is when size_step == 1.
|
539 |
-
size_step = (step + 1) // size_update_period
|
540 |
-
bias_correction2 = 1 - beta2_corr**size_step
|
541 |
-
# we don't bother with bias_correction1; this will help prevent divergence
|
542 |
-
# at the start of training.
|
543 |
-
|
544 |
-
denom = scale_exp_avg_sq.sqrt() + eps
|
545 |
-
|
546 |
-
scale_step = (-size_lr * (bias_correction2**0.5) *
|
547 |
-
scale_grads.sum(dim=0) / denom)
|
548 |
-
|
549 |
-
is_too_small = param_rms < param_min_rms
|
550 |
-
is_too_large = param_rms > param_max_rms
|
551 |
-
|
552 |
-
# when the param gets too small, just don't shrink it any further.
|
553 |
-
scale_step.masked_fill_(is_too_small, 0.0)
|
554 |
-
# when it gets too large, stop it from getting any larger.
|
555 |
-
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
|
556 |
-
delta = state["delta"]
|
557 |
-
# the factor of (1-beta1) relates to momentum.
|
558 |
-
delta.add_(p * scale_step, alpha=(1 - beta1))
|
559 |
-
|
560 |
-
def _step(self, group: dict, p: Tensor, state: dict):
|
561 |
-
"""
|
562 |
-
This function does the core update of self.step(), in the case where the members of
|
563 |
-
the batch have more than 1 element.
|
564 |
-
|
565 |
-
Args:
|
566 |
-
group: A dict which will be used to look up configuration values
|
567 |
-
p: The parameter to be updated
|
568 |
-
grad: The grad of p
|
569 |
-
state: The state-dict corresponding to parameter p
|
570 |
-
|
571 |
-
This function modifies p.
|
572 |
-
"""
|
573 |
-
grad = p.grad
|
574 |
-
lr = group["lr"]
|
575 |
-
beta1, beta2 = group["betas"]
|
576 |
-
eps = group["eps"]
|
577 |
-
param_min_rms = group["param_min_rms"]
|
578 |
-
step = state["step"]
|
579 |
-
|
580 |
-
exp_avg_sq = state["exp_avg_sq"]
|
581 |
-
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
|
582 |
-
|
583 |
-
this_step = state["step"] - (state["zero_step"]
|
584 |
-
if "zero_step" in state else 0)
|
585 |
-
bias_correction2 = 1 - beta2**(this_step + 1)
|
586 |
-
if bias_correction2 < 0.99:
|
587 |
-
# note: not in-place.
|
588 |
-
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
|
589 |
-
|
590 |
-
denom = exp_avg_sq.sqrt()
|
591 |
-
denom += eps
|
592 |
-
grad = grad / denom
|
593 |
-
|
594 |
-
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
|
595 |
-
|
596 |
-
delta = state["delta"]
|
597 |
-
delta.add_(grad * alpha)
|
598 |
-
p.add_(delta)
|
599 |
-
|
600 |
-
def _step_scalar(self, group: dict, p: Tensor, state: dict):
|
601 |
-
"""
|
602 |
-
A simplified form of the core update for scalar tensors, where we cannot get a good
|
603 |
-
estimate of the parameter rms.
|
604 |
-
"""
|
605 |
-
beta1, beta2 = group["betas"]
|
606 |
-
scalar_max = group["scalar_max"]
|
607 |
-
eps = group["eps"]
|
608 |
-
lr = group["lr"] * group["scalar_lr_scale"]
|
609 |
-
grad = p.grad
|
610 |
-
|
611 |
-
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
|
612 |
-
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
613 |
-
|
614 |
-
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
|
615 |
-
# slower update at the start will help stability anyway.
|
616 |
-
bias_correction2 = 1 - beta2**(state["step"] + 1)
|
617 |
-
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
|
618 |
-
|
619 |
-
delta = state["delta"]
|
620 |
-
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
|
621 |
-
p.clamp_(min=-scalar_max, max=scalar_max)
|
622 |
-
p.add_(delta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/patched_mha_with_cache.py
DELETED
@@ -1,463 +0,0 @@
|
|
1 |
-
from torch.nn.functional import *
|
2 |
-
from torch.nn.functional import (
|
3 |
-
_mha_shape_check,
|
4 |
-
_canonical_mask,
|
5 |
-
_none_or_dtype,
|
6 |
-
_in_projection_packed,
|
7 |
-
)
|
8 |
-
|
9 |
-
# import torch
|
10 |
-
# Tensor = torch.Tensor
|
11 |
-
# from typing import Callable, List, Optional, Tuple, Union
|
12 |
-
|
13 |
-
|
14 |
-
def multi_head_attention_forward_patched(
|
15 |
-
query: Tensor,
|
16 |
-
key: Tensor,
|
17 |
-
value: Tensor,
|
18 |
-
embed_dim_to_check: int,
|
19 |
-
num_heads: int,
|
20 |
-
in_proj_weight: Optional[Tensor],
|
21 |
-
in_proj_bias: Optional[Tensor],
|
22 |
-
bias_k: Optional[Tensor],
|
23 |
-
bias_v: Optional[Tensor],
|
24 |
-
add_zero_attn: bool,
|
25 |
-
dropout_p: float,
|
26 |
-
out_proj_weight: Tensor,
|
27 |
-
out_proj_bias: Optional[Tensor],
|
28 |
-
training: bool = True,
|
29 |
-
key_padding_mask: Optional[Tensor] = None,
|
30 |
-
need_weights: bool = True,
|
31 |
-
attn_mask: Optional[Tensor] = None,
|
32 |
-
use_separate_proj_weight: bool = False,
|
33 |
-
q_proj_weight: Optional[Tensor] = None,
|
34 |
-
k_proj_weight: Optional[Tensor] = None,
|
35 |
-
v_proj_weight: Optional[Tensor] = None,
|
36 |
-
static_k: Optional[Tensor] = None,
|
37 |
-
static_v: Optional[Tensor] = None,
|
38 |
-
average_attn_weights: bool = True,
|
39 |
-
is_causal: bool = False,
|
40 |
-
cache=None,
|
41 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
42 |
-
r"""
|
43 |
-
Args:
|
44 |
-
query, key, value: map a query and a set of key-value pairs to an output.
|
45 |
-
See "Attention Is All You Need" for more details.
|
46 |
-
embed_dim_to_check: total dimension of the model.
|
47 |
-
num_heads: parallel attention heads.
|
48 |
-
in_proj_weight, in_proj_bias: input projection weight and bias.
|
49 |
-
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
50 |
-
add_zero_attn: add a new batch of zeros to the key and
|
51 |
-
value sequences at dim=1.
|
52 |
-
dropout_p: probability of an element to be zeroed.
|
53 |
-
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
54 |
-
training: apply dropout if is ``True``.
|
55 |
-
key_padding_mask: if provided, specified padding elements in the key will
|
56 |
-
be ignored by the attention. This is an binary mask. When the value is True,
|
57 |
-
the corresponding value on the attention layer will be filled with -inf.
|
58 |
-
need_weights: output attn_output_weights.
|
59 |
-
Default: `True`
|
60 |
-
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
61 |
-
For best performance when attention weights are not nedeeded.
|
62 |
-
*Setting needs_weights to `True`
|
63 |
-
leads to a significant performance degradation.*
|
64 |
-
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
65 |
-
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
66 |
-
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
67 |
-
attn_mask for computing scaled dot product attention.
|
68 |
-
Default: ``False``.
|
69 |
-
.. warning::
|
70 |
-
is_causal is provides a hint that the attn_mask is the
|
71 |
-
causal mask.Providing incorrect hints can result in
|
72 |
-
incorrect execution, including forward and backward
|
73 |
-
compatibility.
|
74 |
-
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
75 |
-
and value in different forms. If false, in_proj_weight will be used, which is
|
76 |
-
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
77 |
-
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
78 |
-
static_k, static_v: static key and value used for attention operators.
|
79 |
-
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
80 |
-
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
81 |
-
when ``need_weights=True.``. Default: True
|
82 |
-
|
83 |
-
|
84 |
-
Shape:
|
85 |
-
Inputs:
|
86 |
-
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
87 |
-
the embedding dimension.
|
88 |
-
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
89 |
-
the embedding dimension.
|
90 |
-
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
91 |
-
the embedding dimension.
|
92 |
-
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
93 |
-
If a FloatTensor is provided, it will be directly added to the value.
|
94 |
-
If a BoolTensor is provided, the positions with the
|
95 |
-
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
96 |
-
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
97 |
-
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
98 |
-
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
99 |
-
positions. If a BoolTensor is provided, positions with ``True``
|
100 |
-
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
101 |
-
is provided, it will be added to the attention weight.
|
102 |
-
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
103 |
-
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
104 |
-
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
105 |
-
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
106 |
-
|
107 |
-
Outputs:
|
108 |
-
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
109 |
-
E is the embedding dimension.
|
110 |
-
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
111 |
-
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
112 |
-
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
113 |
-
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
114 |
-
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
115 |
-
"""
|
116 |
-
tens_ops = (
|
117 |
-
query,
|
118 |
-
key,
|
119 |
-
value,
|
120 |
-
in_proj_weight,
|
121 |
-
in_proj_bias,
|
122 |
-
bias_k,
|
123 |
-
bias_v,
|
124 |
-
out_proj_weight,
|
125 |
-
out_proj_bias,
|
126 |
-
)
|
127 |
-
if has_torch_function(tens_ops):
|
128 |
-
return handle_torch_function(
|
129 |
-
multi_head_attention_forward,
|
130 |
-
tens_ops,
|
131 |
-
query,
|
132 |
-
key,
|
133 |
-
value,
|
134 |
-
embed_dim_to_check,
|
135 |
-
num_heads,
|
136 |
-
in_proj_weight,
|
137 |
-
in_proj_bias,
|
138 |
-
bias_k,
|
139 |
-
bias_v,
|
140 |
-
add_zero_attn,
|
141 |
-
dropout_p,
|
142 |
-
out_proj_weight,
|
143 |
-
out_proj_bias,
|
144 |
-
training=training,
|
145 |
-
key_padding_mask=key_padding_mask,
|
146 |
-
need_weights=need_weights,
|
147 |
-
attn_mask=attn_mask,
|
148 |
-
is_causal=is_causal,
|
149 |
-
use_separate_proj_weight=use_separate_proj_weight,
|
150 |
-
q_proj_weight=q_proj_weight,
|
151 |
-
k_proj_weight=k_proj_weight,
|
152 |
-
v_proj_weight=v_proj_weight,
|
153 |
-
static_k=static_k,
|
154 |
-
static_v=static_v,
|
155 |
-
average_attn_weights=average_attn_weights,
|
156 |
-
cache=cache,
|
157 |
-
)
|
158 |
-
|
159 |
-
is_batched = _mha_shape_check(
|
160 |
-
query, key, value, key_padding_mask, attn_mask, num_heads
|
161 |
-
)
|
162 |
-
|
163 |
-
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
164 |
-
# is batched, run the computation and before returning squeeze the
|
165 |
-
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
166 |
-
if not is_batched:
|
167 |
-
# unsqueeze if the input is unbatched
|
168 |
-
query = query.unsqueeze(1)
|
169 |
-
key = key.unsqueeze(1)
|
170 |
-
value = value.unsqueeze(1)
|
171 |
-
if key_padding_mask is not None:
|
172 |
-
key_padding_mask = key_padding_mask.unsqueeze(0)
|
173 |
-
|
174 |
-
# set up shape vars
|
175 |
-
tgt_len, bsz, embed_dim = query.shape
|
176 |
-
src_len, _, _ = key.shape
|
177 |
-
|
178 |
-
key_padding_mask = _canonical_mask(
|
179 |
-
mask=key_padding_mask,
|
180 |
-
mask_name="key_padding_mask",
|
181 |
-
other_type=_none_or_dtype(attn_mask),
|
182 |
-
other_name="attn_mask",
|
183 |
-
target_type=query.dtype,
|
184 |
-
)
|
185 |
-
|
186 |
-
if is_causal and attn_mask is None:
|
187 |
-
raise RuntimeError(
|
188 |
-
"Need attn_mask if specifying the is_causal hint. "
|
189 |
-
"You may use the Transformer module method "
|
190 |
-
"`generate_square_subsequent_mask` to create this mask."
|
191 |
-
)
|
192 |
-
|
193 |
-
if is_causal and key_padding_mask is None and not need_weights:
|
194 |
-
# when we have a kpm or need weights, we need attn_mask
|
195 |
-
# Otherwise, we use the is_causal hint go as is_causal
|
196 |
-
# indicator to SDPA.
|
197 |
-
attn_mask = None
|
198 |
-
else:
|
199 |
-
attn_mask = _canonical_mask(
|
200 |
-
mask=attn_mask,
|
201 |
-
mask_name="attn_mask",
|
202 |
-
other_type=None,
|
203 |
-
other_name="",
|
204 |
-
target_type=query.dtype,
|
205 |
-
check_other=False,
|
206 |
-
)
|
207 |
-
|
208 |
-
if key_padding_mask is not None:
|
209 |
-
# We have the attn_mask, and use that to merge kpm into it.
|
210 |
-
# Turn off use of is_causal hint, as the merged mask is no
|
211 |
-
# longer causal.
|
212 |
-
is_causal = False
|
213 |
-
|
214 |
-
assert (
|
215 |
-
embed_dim == embed_dim_to_check
|
216 |
-
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
217 |
-
if isinstance(embed_dim, torch.Tensor):
|
218 |
-
# embed_dim can be a tensor when JIT tracing
|
219 |
-
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
220 |
-
else:
|
221 |
-
head_dim = embed_dim // num_heads
|
222 |
-
assert (
|
223 |
-
head_dim * num_heads == embed_dim
|
224 |
-
), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
225 |
-
if use_separate_proj_weight:
|
226 |
-
# allow MHA to have different embedding dimensions when separate projection weights are used
|
227 |
-
assert (
|
228 |
-
key.shape[:2] == value.shape[:2]
|
229 |
-
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
230 |
-
else:
|
231 |
-
assert (
|
232 |
-
key.shape == value.shape
|
233 |
-
), f"key shape {key.shape} does not match value shape {value.shape}"
|
234 |
-
|
235 |
-
#
|
236 |
-
# compute in-projection
|
237 |
-
#
|
238 |
-
if not use_separate_proj_weight:
|
239 |
-
assert (
|
240 |
-
in_proj_weight is not None
|
241 |
-
), "use_separate_proj_weight is False but in_proj_weight is None"
|
242 |
-
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
243 |
-
else:
|
244 |
-
assert (
|
245 |
-
q_proj_weight is not None
|
246 |
-
), "use_separate_proj_weight is True but q_proj_weight is None"
|
247 |
-
assert (
|
248 |
-
k_proj_weight is not None
|
249 |
-
), "use_separate_proj_weight is True but k_proj_weight is None"
|
250 |
-
assert (
|
251 |
-
v_proj_weight is not None
|
252 |
-
), "use_separate_proj_weight is True but v_proj_weight is None"
|
253 |
-
if in_proj_bias is None:
|
254 |
-
b_q = b_k = b_v = None
|
255 |
-
else:
|
256 |
-
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
257 |
-
q, k, v = _in_projection(
|
258 |
-
query,
|
259 |
-
key,
|
260 |
-
value,
|
261 |
-
q_proj_weight,
|
262 |
-
k_proj_weight,
|
263 |
-
v_proj_weight,
|
264 |
-
b_q,
|
265 |
-
b_k,
|
266 |
-
b_v,
|
267 |
-
)
|
268 |
-
if cache != None:
|
269 |
-
if cache["first_infer"] == 1:
|
270 |
-
cache["k"][cache["stage"]] = k
|
271 |
-
# print(0,cache["k"].shape)
|
272 |
-
cache["v"][cache["stage"]] = v
|
273 |
-
else: ###12个layer每个都要留自己的cache_kv
|
274 |
-
# print(1,cache["k"].shape)
|
275 |
-
cache["k"][cache["stage"]] = torch.cat(
|
276 |
-
[cache["k"][cache["stage"]], k], 0
|
277 |
-
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
278 |
-
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
279 |
-
# print(2, cache["k"].shape)
|
280 |
-
src_len = cache["k"][cache["stage"]].shape[0]
|
281 |
-
k = cache["k"][cache["stage"]]
|
282 |
-
v = cache["v"][cache["stage"]]
|
283 |
-
# if attn_mask is not None:
|
284 |
-
# attn_mask=attn_mask[-1:,]
|
285 |
-
# print(attn_mask.shape,attn_mask)
|
286 |
-
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
287 |
-
# print(2333,cache)
|
288 |
-
# prep attention mask
|
289 |
-
|
290 |
-
attn_mask = _canonical_mask(
|
291 |
-
mask=attn_mask,
|
292 |
-
mask_name="attn_mask",
|
293 |
-
other_type=None,
|
294 |
-
other_name="",
|
295 |
-
target_type=q.dtype,
|
296 |
-
check_other=False,
|
297 |
-
)
|
298 |
-
|
299 |
-
if attn_mask is not None:
|
300 |
-
# ensure attn_mask's dim is 3
|
301 |
-
if attn_mask.dim() == 2:
|
302 |
-
correct_2d_size = (tgt_len, src_len)
|
303 |
-
if attn_mask.shape != correct_2d_size:
|
304 |
-
raise RuntimeError(
|
305 |
-
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
306 |
-
)
|
307 |
-
attn_mask = attn_mask.unsqueeze(0)
|
308 |
-
elif attn_mask.dim() == 3:
|
309 |
-
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
310 |
-
if attn_mask.shape != correct_3d_size:
|
311 |
-
raise RuntimeError(
|
312 |
-
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
313 |
-
)
|
314 |
-
else:
|
315 |
-
raise RuntimeError(
|
316 |
-
f"attn_mask's dimension {attn_mask.dim()} is not supported"
|
317 |
-
)
|
318 |
-
|
319 |
-
# add bias along batch dimension (currently second)
|
320 |
-
if bias_k is not None and bias_v is not None:
|
321 |
-
assert static_k is None, "bias cannot be added to static key."
|
322 |
-
assert static_v is None, "bias cannot be added to static value."
|
323 |
-
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
324 |
-
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
325 |
-
if attn_mask is not None:
|
326 |
-
attn_mask = pad(attn_mask, (0, 1))
|
327 |
-
if key_padding_mask is not None:
|
328 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
329 |
-
else:
|
330 |
-
assert bias_k is None
|
331 |
-
assert bias_v is None
|
332 |
-
|
333 |
-
#
|
334 |
-
# reshape q, k, v for multihead attention and make em batch first
|
335 |
-
#
|
336 |
-
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
337 |
-
if static_k is None:
|
338 |
-
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
339 |
-
else:
|
340 |
-
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
341 |
-
assert (
|
342 |
-
static_k.size(0) == bsz * num_heads
|
343 |
-
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
344 |
-
assert (
|
345 |
-
static_k.size(2) == head_dim
|
346 |
-
), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
347 |
-
k = static_k
|
348 |
-
if static_v is None:
|
349 |
-
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
350 |
-
else:
|
351 |
-
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
352 |
-
assert (
|
353 |
-
static_v.size(0) == bsz * num_heads
|
354 |
-
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
355 |
-
assert (
|
356 |
-
static_v.size(2) == head_dim
|
357 |
-
), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
358 |
-
v = static_v
|
359 |
-
|
360 |
-
# add zero attention along batch dimension (now first)
|
361 |
-
if add_zero_attn:
|
362 |
-
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
363 |
-
k = torch.cat(
|
364 |
-
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
|
365 |
-
)
|
366 |
-
v = torch.cat(
|
367 |
-
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
|
368 |
-
)
|
369 |
-
if attn_mask is not None:
|
370 |
-
attn_mask = pad(attn_mask, (0, 1))
|
371 |
-
if key_padding_mask is not None:
|
372 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
373 |
-
|
374 |
-
# update source sequence length after adjustments
|
375 |
-
src_len = k.size(1)
|
376 |
-
|
377 |
-
# merge key padding and attention masks
|
378 |
-
if key_padding_mask is not None:
|
379 |
-
assert key_padding_mask.shape == (
|
380 |
-
bsz,
|
381 |
-
src_len,
|
382 |
-
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
383 |
-
key_padding_mask = (
|
384 |
-
key_padding_mask.view(bsz, 1, 1, src_len)
|
385 |
-
.expand(-1, num_heads, -1, -1)
|
386 |
-
.reshape(bsz * num_heads, 1, src_len)
|
387 |
-
)
|
388 |
-
if attn_mask is None:
|
389 |
-
attn_mask = key_padding_mask
|
390 |
-
else:
|
391 |
-
attn_mask = attn_mask + key_padding_mask
|
392 |
-
|
393 |
-
# adjust dropout probability
|
394 |
-
if not training:
|
395 |
-
dropout_p = 0.0
|
396 |
-
|
397 |
-
#
|
398 |
-
# (deep breath) calculate attention and out projection
|
399 |
-
#
|
400 |
-
|
401 |
-
if need_weights:
|
402 |
-
B, Nt, E = q.shape
|
403 |
-
q_scaled = q / math.sqrt(E)
|
404 |
-
|
405 |
-
assert not (
|
406 |
-
is_causal and attn_mask is None
|
407 |
-
), "FIXME: is_causal not implemented for need_weights"
|
408 |
-
|
409 |
-
if attn_mask is not None:
|
410 |
-
attn_output_weights = torch.baddbmm(
|
411 |
-
attn_mask, q_scaled, k.transpose(-2, -1)
|
412 |
-
)
|
413 |
-
else:
|
414 |
-
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
415 |
-
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
416 |
-
if dropout_p > 0.0:
|
417 |
-
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
418 |
-
|
419 |
-
attn_output = torch.bmm(attn_output_weights, v)
|
420 |
-
|
421 |
-
attn_output = (
|
422 |
-
attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
423 |
-
)
|
424 |
-
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
425 |
-
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
426 |
-
|
427 |
-
# optionally average attention weights over heads
|
428 |
-
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
429 |
-
if average_attn_weights:
|
430 |
-
attn_output_weights = attn_output_weights.mean(dim=1)
|
431 |
-
|
432 |
-
if not is_batched:
|
433 |
-
# squeeze the output if input was unbatched
|
434 |
-
attn_output = attn_output.squeeze(1)
|
435 |
-
attn_output_weights = attn_output_weights.squeeze(0)
|
436 |
-
return attn_output, attn_output_weights
|
437 |
-
else:
|
438 |
-
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
439 |
-
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
440 |
-
# in order to match the input for SDPA of (N, num_heads, L, S)
|
441 |
-
if attn_mask is not None:
|
442 |
-
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
443 |
-
attn_mask = attn_mask.unsqueeze(0)
|
444 |
-
else:
|
445 |
-
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
446 |
-
|
447 |
-
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
448 |
-
k = k.view(bsz, num_heads, src_len, head_dim)
|
449 |
-
v = v.view(bsz, num_heads, src_len, head_dim)
|
450 |
-
|
451 |
-
attn_output = scaled_dot_product_attention(
|
452 |
-
q, k, v, attn_mask, dropout_p, is_causal
|
453 |
-
)
|
454 |
-
attn_output = (
|
455 |
-
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
456 |
-
)
|
457 |
-
|
458 |
-
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
459 |
-
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
460 |
-
if not is_batched:
|
461 |
-
# squeeze the output if input was unbatched
|
462 |
-
attn_output = attn_output.squeeze(1)
|
463 |
-
return attn_output, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/patched_mha_with_cache_onnx.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
from torch.nn.functional import *
|
2 |
-
from torch.nn.functional import (
|
3 |
-
_mha_shape_check,
|
4 |
-
_canonical_mask,
|
5 |
-
_none_or_dtype,
|
6 |
-
_in_projection_packed,
|
7 |
-
)
|
8 |
-
|
9 |
-
def multi_head_attention_forward_patched(
|
10 |
-
query,
|
11 |
-
key,
|
12 |
-
value,
|
13 |
-
embed_dim_to_check: int,
|
14 |
-
num_heads: int,
|
15 |
-
in_proj_weight,
|
16 |
-
in_proj_bias: Optional[Tensor],
|
17 |
-
bias_k: Optional[Tensor],
|
18 |
-
bias_v: Optional[Tensor],
|
19 |
-
add_zero_attn: bool,
|
20 |
-
dropout_p: float,
|
21 |
-
out_proj_weight: Tensor,
|
22 |
-
out_proj_bias: Optional[Tensor],
|
23 |
-
training: bool = True,
|
24 |
-
key_padding_mask: Optional[Tensor] = None,
|
25 |
-
need_weights: bool = True,
|
26 |
-
attn_mask: Optional[Tensor] = None,
|
27 |
-
use_separate_proj_weight: bool = False,
|
28 |
-
q_proj_weight: Optional[Tensor] = None,
|
29 |
-
k_proj_weight: Optional[Tensor] = None,
|
30 |
-
v_proj_weight: Optional[Tensor] = None,
|
31 |
-
static_k: Optional[Tensor] = None,
|
32 |
-
static_v: Optional[Tensor] = None,
|
33 |
-
average_attn_weights: bool = True,
|
34 |
-
is_causal: bool = False,
|
35 |
-
cache=None,
|
36 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
37 |
-
|
38 |
-
# set up shape vars
|
39 |
-
_, _, embed_dim = query.shape
|
40 |
-
attn_mask = _canonical_mask(
|
41 |
-
mask=attn_mask,
|
42 |
-
mask_name="attn_mask",
|
43 |
-
other_type=None,
|
44 |
-
other_name="",
|
45 |
-
target_type=query.dtype,
|
46 |
-
check_other=False,
|
47 |
-
)
|
48 |
-
head_dim = embed_dim // num_heads
|
49 |
-
|
50 |
-
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
51 |
-
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
52 |
-
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
53 |
-
|
54 |
-
if cache["first_infer"] == 1:
|
55 |
-
cache["k"][cache["stage"]] = k
|
56 |
-
cache["v"][cache["stage"]] = v
|
57 |
-
else:
|
58 |
-
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
59 |
-
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
60 |
-
k = cache["k"][cache["stage"]]
|
61 |
-
v = cache["v"][cache["stage"]]
|
62 |
-
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
63 |
-
|
64 |
-
attn_mask = _canonical_mask(
|
65 |
-
mask=attn_mask,
|
66 |
-
mask_name="attn_mask",
|
67 |
-
other_type=None,
|
68 |
-
other_name="",
|
69 |
-
target_type=q.dtype,
|
70 |
-
check_other=False,
|
71 |
-
)
|
72 |
-
attn_mask = attn_mask.unsqueeze(0)
|
73 |
-
|
74 |
-
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
75 |
-
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
76 |
-
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
77 |
-
|
78 |
-
dropout_p = 0.0
|
79 |
-
attn_mask = attn_mask.unsqueeze(0)
|
80 |
-
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
81 |
-
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
82 |
-
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
83 |
-
attn_output = scaled_dot_product_attention(
|
84 |
-
q, k, v, attn_mask, dropout_p, is_causal
|
85 |
-
)
|
86 |
-
attn_output = (
|
87 |
-
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
88 |
-
)
|
89 |
-
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
90 |
-
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
91 |
-
|
92 |
-
return attn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/scaling.py
DELETED
@@ -1,335 +0,0 @@
|
|
1 |
-
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
2 |
-
#
|
3 |
-
# See ../../../../LICENSE for clarification regarding multiple authors
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
#import logging
|
17 |
-
import math
|
18 |
-
import random
|
19 |
-
from typing import Optional
|
20 |
-
from typing import Tuple
|
21 |
-
from typing import Union
|
22 |
-
|
23 |
-
import torch
|
24 |
-
import torch.nn as nn
|
25 |
-
from torch import Tensor
|
26 |
-
|
27 |
-
|
28 |
-
class DoubleSwishFunction(torch.autograd.Function):
|
29 |
-
"""
|
30 |
-
double_swish(x) = x * torch.sigmoid(x-1)
|
31 |
-
This is a definition, originally motivated by its close numerical
|
32 |
-
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
33 |
-
|
34 |
-
Memory-efficient derivative computation:
|
35 |
-
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
36 |
-
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
37 |
-
Now, s'(x) = s(x) * (1-s(x)).
|
38 |
-
double_swish'(x) = x * s'(x) + s(x).
|
39 |
-
= x * s(x) * (1-s(x)) + s(x).
|
40 |
-
= double_swish(x) * (1-s(x)) + s(x)
|
41 |
-
... so we just need to remember s(x) but not x itself.
|
42 |
-
"""
|
43 |
-
|
44 |
-
@staticmethod
|
45 |
-
def forward(ctx, x: Tensor) -> Tensor:
|
46 |
-
requires_grad = x.requires_grad
|
47 |
-
x_dtype = x.dtype
|
48 |
-
if x.dtype == torch.float16:
|
49 |
-
x = x.to(torch.float32)
|
50 |
-
|
51 |
-
s = torch.sigmoid(x - 1.0)
|
52 |
-
y = x * s
|
53 |
-
|
54 |
-
if requires_grad:
|
55 |
-
deriv = y * (1 - s) + s
|
56 |
-
# notes on derivative of x * sigmoid(x - 1):
|
57 |
-
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
58 |
-
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
59 |
-
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
60 |
-
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
61 |
-
# floors), should be expectation-preserving.
|
62 |
-
floor = -0.043637
|
63 |
-
ceil = 1.2
|
64 |
-
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
|
65 |
-
deriv
|
66 |
-
)
|
67 |
-
if __name__ == "__main__":
|
68 |
-
# for self-testing only.
|
69 |
-
assert d_scaled.min() >= 0.0
|
70 |
-
assert d_scaled.max() < 256.0
|
71 |
-
d_int = d_scaled.to(torch.uint8)
|
72 |
-
ctx.save_for_backward(d_int)
|
73 |
-
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
74 |
-
y = y.to(torch.float16)
|
75 |
-
return y
|
76 |
-
|
77 |
-
@staticmethod
|
78 |
-
def backward(ctx, y_grad: Tensor) -> Tensor:
|
79 |
-
(d,) = ctx.saved_tensors
|
80 |
-
# the same constants as used in forward pass.
|
81 |
-
floor = -0.043637
|
82 |
-
ceil = 1.2
|
83 |
-
d = d * ((ceil - floor) / 255.0) + floor
|
84 |
-
return y_grad * d
|
85 |
-
|
86 |
-
|
87 |
-
class DoubleSwish(torch.nn.Module):
|
88 |
-
def forward(self, x: Tensor) -> Tensor:
|
89 |
-
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
90 |
-
that we approximate closely with x * sigmoid(x-1).
|
91 |
-
"""
|
92 |
-
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
93 |
-
return x * torch.sigmoid(x - 1.0)
|
94 |
-
return DoubleSwishFunction.apply(x)
|
95 |
-
|
96 |
-
|
97 |
-
class ActivationBalancerFunction(torch.autograd.Function):
|
98 |
-
@staticmethod
|
99 |
-
def forward(
|
100 |
-
ctx,
|
101 |
-
x: Tensor,
|
102 |
-
scale_factor: Tensor,
|
103 |
-
sign_factor: Optional[Tensor],
|
104 |
-
channel_dim: int,
|
105 |
-
) -> Tensor:
|
106 |
-
if channel_dim < 0:
|
107 |
-
channel_dim += x.ndim
|
108 |
-
ctx.channel_dim = channel_dim
|
109 |
-
xgt0 = x > 0
|
110 |
-
if sign_factor is None:
|
111 |
-
ctx.save_for_backward(xgt0, scale_factor)
|
112 |
-
else:
|
113 |
-
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
114 |
-
return x
|
115 |
-
|
116 |
-
@staticmethod
|
117 |
-
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
118 |
-
if len(ctx.saved_tensors) == 3:
|
119 |
-
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
120 |
-
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
121 |
-
scale_factor = scale_factor.unsqueeze(-1)
|
122 |
-
sign_factor = sign_factor.unsqueeze(-1)
|
123 |
-
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
124 |
-
else:
|
125 |
-
xgt0, scale_factor = ctx.saved_tensors
|
126 |
-
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
127 |
-
scale_factor = scale_factor.unsqueeze(-1)
|
128 |
-
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
129 |
-
neg_delta_grad = x_grad.abs() * factor
|
130 |
-
return (
|
131 |
-
x_grad - neg_delta_grad,
|
132 |
-
None,
|
133 |
-
None,
|
134 |
-
None,
|
135 |
-
)
|
136 |
-
|
137 |
-
|
138 |
-
def _compute_scale_factor(
|
139 |
-
x: Tensor,
|
140 |
-
channel_dim: int,
|
141 |
-
min_abs: float,
|
142 |
-
max_abs: float,
|
143 |
-
gain_factor: float,
|
144 |
-
max_factor: float,
|
145 |
-
) -> Tensor:
|
146 |
-
if channel_dim < 0:
|
147 |
-
channel_dim += x.ndim
|
148 |
-
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
149 |
-
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
150 |
-
|
151 |
-
if min_abs == 0.0:
|
152 |
-
below_threshold = 0.0
|
153 |
-
else:
|
154 |
-
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
155 |
-
# x_abs)_mean , min_abs.
|
156 |
-
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
157 |
-
min=0, max=max_factor
|
158 |
-
)
|
159 |
-
|
160 |
-
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
161 |
-
min=0, max=max_factor
|
162 |
-
)
|
163 |
-
|
164 |
-
return below_threshold - above_threshold
|
165 |
-
|
166 |
-
|
167 |
-
def _compute_sign_factor(
|
168 |
-
x: Tensor,
|
169 |
-
channel_dim: int,
|
170 |
-
min_positive: float,
|
171 |
-
max_positive: float,
|
172 |
-
gain_factor: float,
|
173 |
-
max_factor: float,
|
174 |
-
) -> Tensor:
|
175 |
-
if channel_dim < 0:
|
176 |
-
channel_dim += x.ndim
|
177 |
-
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
178 |
-
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
179 |
-
if min_positive == 0.0:
|
180 |
-
factor1 = 0.0
|
181 |
-
else:
|
182 |
-
# 0 if proportion_positive >= min_positive, else can be
|
183 |
-
# as large as max_factor.
|
184 |
-
factor1 = (
|
185 |
-
(min_positive - proportion_positive) * (gain_factor / min_positive)
|
186 |
-
).clamp_(min=0, max=max_factor)
|
187 |
-
|
188 |
-
if max_positive == 1.0:
|
189 |
-
factor2 = 0.0
|
190 |
-
else:
|
191 |
-
# 0 if self.proportion_positive <= max_positive, else can be
|
192 |
-
# as large as -max_factor.
|
193 |
-
factor2 = (
|
194 |
-
(proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
|
195 |
-
).clamp_(min=0, max=max_factor)
|
196 |
-
sign_factor = factor1 - factor2
|
197 |
-
# require min_positive != 0 or max_positive != 1:
|
198 |
-
assert not isinstance(sign_factor, float)
|
199 |
-
return sign_factor
|
200 |
-
|
201 |
-
|
202 |
-
class ActivationBalancer(torch.nn.Module):
|
203 |
-
"""
|
204 |
-
Modifies the backpropped derivatives of a function to try to encourage, for
|
205 |
-
each channel, that it is positive at least a proportion `threshold` of the
|
206 |
-
time. It does this by multiplying negative derivative values by up to
|
207 |
-
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
208 |
-
interpolated from 1 at the threshold to those extremal values when none
|
209 |
-
of the inputs are positive.
|
210 |
-
|
211 |
-
Args:
|
212 |
-
num_channels: the number of channels
|
213 |
-
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
214 |
-
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
215 |
-
min_positive: the minimum, per channel, of the proportion of the time
|
216 |
-
that (x > 0), below which we start to modify the derivatives.
|
217 |
-
max_positive: the maximum, per channel, of the proportion of the time
|
218 |
-
that (x > 0), above which we start to modify the derivatives.
|
219 |
-
max_factor: the maximum factor by which we modify the derivatives for
|
220 |
-
either the sign constraint or the magnitude constraint;
|
221 |
-
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
222 |
-
values in the range [0.98..1.02].
|
223 |
-
sign_gain_factor: determines the 'gain' with which we increase the
|
224 |
-
change in gradient once the constraints on min_positive and max_positive
|
225 |
-
are violated.
|
226 |
-
scale_gain_factor: determines the 'gain' with which we increase the
|
227 |
-
change in gradient once the constraints on min_abs and max_abs
|
228 |
-
are violated.
|
229 |
-
min_abs: the minimum average-absolute-value difference from the mean
|
230 |
-
value per channel, which we allow, before we start to modify
|
231 |
-
the derivatives to prevent this.
|
232 |
-
max_abs: the maximum average-absolute-value difference from the mean
|
233 |
-
value per channel, which we allow, before we start to modify
|
234 |
-
the derivatives to prevent this.
|
235 |
-
min_prob: determines the minimum probability with which we modify the
|
236 |
-
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
237 |
-
on each forward(). This is done randomly to prevent all layers
|
238 |
-
from doing it at the same time. Early in training we may use
|
239 |
-
higher probabilities than this; it will decay to this value.
|
240 |
-
"""
|
241 |
-
|
242 |
-
def __init__(
|
243 |
-
self,
|
244 |
-
num_channels: int,
|
245 |
-
channel_dim: int,
|
246 |
-
min_positive: float = 0.05,
|
247 |
-
max_positive: float = 0.95,
|
248 |
-
max_factor: float = 0.04,
|
249 |
-
sign_gain_factor: float = 0.01,
|
250 |
-
scale_gain_factor: float = 0.02,
|
251 |
-
min_abs: float = 0.2,
|
252 |
-
max_abs: float = 100.0,
|
253 |
-
min_prob: float = 0.1,
|
254 |
-
):
|
255 |
-
super(ActivationBalancer, self).__init__()
|
256 |
-
self.num_channels = num_channels
|
257 |
-
self.channel_dim = channel_dim
|
258 |
-
self.min_positive = min_positive
|
259 |
-
self.max_positive = max_positive
|
260 |
-
self.max_factor = max_factor
|
261 |
-
self.min_abs = min_abs
|
262 |
-
self.max_abs = max_abs
|
263 |
-
self.min_prob = min_prob
|
264 |
-
self.sign_gain_factor = sign_gain_factor
|
265 |
-
self.scale_gain_factor = scale_gain_factor
|
266 |
-
|
267 |
-
# count measures how many times the forward() function has been called.
|
268 |
-
# We occasionally sync this to a tensor called `count`, that exists to
|
269 |
-
# make sure it is synced to disk when we load and save the model.
|
270 |
-
self.cpu_count = 0
|
271 |
-
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
272 |
-
|
273 |
-
def forward(self, x: Tensor) -> Tensor:
|
274 |
-
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
275 |
-
return _no_op(x)
|
276 |
-
|
277 |
-
count = self.cpu_count
|
278 |
-
self.cpu_count += 1
|
279 |
-
|
280 |
-
if random.random() < 0.01:
|
281 |
-
# Occasionally sync self.cpu_count with self.count.
|
282 |
-
# count affects the decay of 'prob'. don't do this on every iter,
|
283 |
-
# because syncing with the GPU is slow.
|
284 |
-
self.cpu_count = max(self.cpu_count, self.count.item())
|
285 |
-
self.count.fill_(self.cpu_count)
|
286 |
-
|
287 |
-
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
288 |
-
# a floor at min_prob (==0.1, by default)
|
289 |
-
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
290 |
-
|
291 |
-
if random.random() < prob:
|
292 |
-
sign_gain_factor = 0.5
|
293 |
-
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
294 |
-
sign_factor = _compute_sign_factor(
|
295 |
-
x,
|
296 |
-
self.channel_dim,
|
297 |
-
self.min_positive,
|
298 |
-
self.max_positive,
|
299 |
-
gain_factor=self.sign_gain_factor / prob,
|
300 |
-
max_factor=self.max_factor,
|
301 |
-
)
|
302 |
-
else:
|
303 |
-
sign_factor = None
|
304 |
-
|
305 |
-
scale_factor = _compute_scale_factor(
|
306 |
-
x.detach(),
|
307 |
-
self.channel_dim,
|
308 |
-
min_abs=self.min_abs,
|
309 |
-
max_abs=self.max_abs,
|
310 |
-
gain_factor=self.scale_gain_factor / prob,
|
311 |
-
max_factor=self.max_factor,
|
312 |
-
)
|
313 |
-
return ActivationBalancerFunction.apply(
|
314 |
-
x,
|
315 |
-
scale_factor,
|
316 |
-
sign_factor,
|
317 |
-
self.channel_dim,
|
318 |
-
)
|
319 |
-
else:
|
320 |
-
return _no_op(x)
|
321 |
-
|
322 |
-
|
323 |
-
def BalancedDoubleSwish(
|
324 |
-
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
|
325 |
-
) -> nn.Sequential:
|
326 |
-
"""
|
327 |
-
ActivationBalancer -> DoubleSwish
|
328 |
-
"""
|
329 |
-
balancer = ActivationBalancer(
|
330 |
-
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
|
331 |
-
)
|
332 |
-
return nn.Sequential(
|
333 |
-
balancer,
|
334 |
-
DoubleSwish(),
|
335 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/transformer.py
DELETED
@@ -1,378 +0,0 @@
|
|
1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
2 |
-
import copy
|
3 |
-
import numbers
|
4 |
-
from functools import partial
|
5 |
-
from typing import Any
|
6 |
-
from typing import Callable
|
7 |
-
from typing import List
|
8 |
-
from typing import Optional
|
9 |
-
from typing import Tuple
|
10 |
-
from typing import Union
|
11 |
-
|
12 |
-
import torch
|
13 |
-
from AR.modules.activation import MultiheadAttention
|
14 |
-
from AR.modules.scaling import BalancedDoubleSwish
|
15 |
-
from torch import nn
|
16 |
-
from torch import Tensor
|
17 |
-
from torch.nn import functional as F
|
18 |
-
|
19 |
-
_shape_t = Union[int, List[int], torch.Size]
|
20 |
-
|
21 |
-
|
22 |
-
class LayerNorm(nn.Module):
|
23 |
-
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
24 |
-
normalized_shape: Tuple[int, ...]
|
25 |
-
eps: float
|
26 |
-
elementwise_affine: bool
|
27 |
-
|
28 |
-
def __init__(
|
29 |
-
self,
|
30 |
-
normalized_shape: _shape_t,
|
31 |
-
eps: float = 1e-5,
|
32 |
-
elementwise_affine: bool = True,
|
33 |
-
device=None,
|
34 |
-
dtype=None,
|
35 |
-
) -> None:
|
36 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
37 |
-
super(LayerNorm, self).__init__()
|
38 |
-
if isinstance(normalized_shape, numbers.Integral):
|
39 |
-
# mypy error: incompatible types in assignment
|
40 |
-
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
41 |
-
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
42 |
-
self.eps = eps
|
43 |
-
self.elementwise_affine = elementwise_affine
|
44 |
-
if self.elementwise_affine:
|
45 |
-
self.weight = nn.Parameter(
|
46 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
47 |
-
)
|
48 |
-
self.bias = nn.Parameter(
|
49 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
50 |
-
)
|
51 |
-
else:
|
52 |
-
self.register_parameter("weight", None)
|
53 |
-
self.register_parameter("bias", None)
|
54 |
-
|
55 |
-
self.reset_parameters()
|
56 |
-
|
57 |
-
def reset_parameters(self) -> None:
|
58 |
-
if self.elementwise_affine:
|
59 |
-
nn.init.ones_(self.weight)
|
60 |
-
nn.init.zeros_(self.bias)
|
61 |
-
|
62 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
63 |
-
if isinstance(input, tuple):
|
64 |
-
input, embedding = input
|
65 |
-
return (
|
66 |
-
F.layer_norm(
|
67 |
-
input,
|
68 |
-
self.normalized_shape,
|
69 |
-
self.weight,
|
70 |
-
self.bias,
|
71 |
-
self.eps,
|
72 |
-
),
|
73 |
-
embedding,
|
74 |
-
)
|
75 |
-
|
76 |
-
assert embedding is None
|
77 |
-
return F.layer_norm(
|
78 |
-
input, self.normalized_shape, self.weight, self.bias, self.eps
|
79 |
-
)
|
80 |
-
|
81 |
-
def extra_repr(self) -> str:
|
82 |
-
return (
|
83 |
-
"{normalized_shape}, eps={eps}, "
|
84 |
-
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
85 |
-
)
|
86 |
-
|
87 |
-
|
88 |
-
class IdentityNorm(nn.Module):
|
89 |
-
def __init__(
|
90 |
-
self,
|
91 |
-
d_model: int,
|
92 |
-
eps: float = 1e-5,
|
93 |
-
device=None,
|
94 |
-
dtype=None,
|
95 |
-
) -> None:
|
96 |
-
super(IdentityNorm, self).__init__()
|
97 |
-
|
98 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
99 |
-
if isinstance(input, tuple):
|
100 |
-
return input
|
101 |
-
|
102 |
-
assert embedding is None
|
103 |
-
return input
|
104 |
-
|
105 |
-
|
106 |
-
class TransformerEncoder(nn.Module):
|
107 |
-
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
108 |
-
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
109 |
-
|
110 |
-
Args:
|
111 |
-
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
112 |
-
num_layers: the number of sub-encoder-layers in the encoder (required).
|
113 |
-
norm: the layer normalization component (optional).
|
114 |
-
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
115 |
-
(and convert back on output). This will improve the overall performance of
|
116 |
-
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
117 |
-
|
118 |
-
Examples::
|
119 |
-
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
120 |
-
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
121 |
-
>>> src = torch.rand(10, 32, 512)
|
122 |
-
>>> out = transformer_encoder(src)
|
123 |
-
"""
|
124 |
-
__constants__ = ["norm"]
|
125 |
-
|
126 |
-
def __init__(self, encoder_layer, num_layers, norm=None):
|
127 |
-
super(TransformerEncoder, self).__init__()
|
128 |
-
self.layers = _get_clones(encoder_layer, num_layers)
|
129 |
-
self.num_layers = num_layers
|
130 |
-
self.norm = norm
|
131 |
-
|
132 |
-
def forward(
|
133 |
-
self,
|
134 |
-
src: Tensor,
|
135 |
-
mask: Optional[Tensor] = None,
|
136 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
137 |
-
return_layer_states: bool = False,
|
138 |
-
cache=None,
|
139 |
-
) -> Tensor:
|
140 |
-
r"""Pass the input through the encoder layers in turn.
|
141 |
-
|
142 |
-
Args:
|
143 |
-
src: the sequence to the encoder (required).
|
144 |
-
mask: the mask for the src sequence (optional).
|
145 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
146 |
-
return_layer_states: return layers' state (optional).
|
147 |
-
|
148 |
-
Shape:
|
149 |
-
see the docs in Transformer class.
|
150 |
-
"""
|
151 |
-
if return_layer_states:
|
152 |
-
layer_states = [] # layers' output
|
153 |
-
output = src
|
154 |
-
for mod in self.layers:
|
155 |
-
output = mod(
|
156 |
-
output,
|
157 |
-
src_mask=mask,
|
158 |
-
src_key_padding_mask=src_key_padding_mask,
|
159 |
-
cache=cache,
|
160 |
-
)
|
161 |
-
layer_states.append(output[0])
|
162 |
-
|
163 |
-
if self.norm is not None:
|
164 |
-
output = self.norm(output)
|
165 |
-
|
166 |
-
return layer_states, output
|
167 |
-
|
168 |
-
output = src
|
169 |
-
for mod in self.layers:
|
170 |
-
output = mod(
|
171 |
-
output,
|
172 |
-
src_mask=mask,
|
173 |
-
src_key_padding_mask=src_key_padding_mask,
|
174 |
-
cache=cache,
|
175 |
-
)
|
176 |
-
|
177 |
-
if self.norm is not None:
|
178 |
-
output = self.norm(output)
|
179 |
-
|
180 |
-
return output
|
181 |
-
|
182 |
-
|
183 |
-
class TransformerEncoderLayer(nn.Module):
|
184 |
-
__constants__ = ["batch_first", "norm_first"]
|
185 |
-
|
186 |
-
def __init__(
|
187 |
-
self,
|
188 |
-
d_model: int,
|
189 |
-
nhead: int,
|
190 |
-
dim_feedforward: int = 2048,
|
191 |
-
dropout: float = 0.1,
|
192 |
-
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
193 |
-
batch_first: bool = False,
|
194 |
-
norm_first: bool = False,
|
195 |
-
device=None,
|
196 |
-
dtype=None,
|
197 |
-
linear1_self_attention_cls: nn.Module = nn.Linear,
|
198 |
-
linear2_self_attention_cls: nn.Module = nn.Linear,
|
199 |
-
linear1_feedforward_cls: nn.Module = nn.Linear,
|
200 |
-
linear2_feedforward_cls: nn.Module = nn.Linear,
|
201 |
-
layer_norm_cls: nn.Module = LayerNorm,
|
202 |
-
layer_norm_eps: float = 1e-5,
|
203 |
-
adaptive_layer_norm=False,
|
204 |
-
) -> None:
|
205 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
206 |
-
super(TransformerEncoderLayer, self).__init__()
|
207 |
-
# print(233333333333,d_model,nhead)
|
208 |
-
# import os
|
209 |
-
# os._exit(2333333)
|
210 |
-
self.self_attn = MultiheadAttention(
|
211 |
-
d_model, # 512 16
|
212 |
-
nhead,
|
213 |
-
dropout=dropout,
|
214 |
-
batch_first=batch_first,
|
215 |
-
linear1_cls=linear1_self_attention_cls,
|
216 |
-
linear2_cls=linear2_self_attention_cls,
|
217 |
-
**factory_kwargs,
|
218 |
-
)
|
219 |
-
|
220 |
-
# Implementation of Feedforward model
|
221 |
-
self.linear1 = linear1_feedforward_cls(
|
222 |
-
d_model, dim_feedforward, **factory_kwargs
|
223 |
-
)
|
224 |
-
self.dropout = nn.Dropout(dropout)
|
225 |
-
self.linear2 = linear2_feedforward_cls(
|
226 |
-
dim_feedforward, d_model, **factory_kwargs
|
227 |
-
)
|
228 |
-
|
229 |
-
self.norm_first = norm_first
|
230 |
-
self.dropout1 = nn.Dropout(dropout)
|
231 |
-
self.dropout2 = nn.Dropout(dropout)
|
232 |
-
|
233 |
-
# Legacy string support for activation function.
|
234 |
-
if isinstance(activation, str):
|
235 |
-
activation = _get_activation_fn(activation)
|
236 |
-
elif isinstance(activation, partial):
|
237 |
-
activation = activation(d_model)
|
238 |
-
elif activation == BalancedDoubleSwish:
|
239 |
-
activation = BalancedDoubleSwish(d_model)
|
240 |
-
|
241 |
-
# # We can't test self.activation in forward() in TorchScript,
|
242 |
-
# # so stash some information about it instead.
|
243 |
-
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
244 |
-
# self.activation_relu_or_gelu = 1
|
245 |
-
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
246 |
-
# self.activation_relu_or_gelu = 2
|
247 |
-
# else:
|
248 |
-
# self.activation_relu_or_gelu = 0
|
249 |
-
self.activation = activation
|
250 |
-
|
251 |
-
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
252 |
-
if layer_norm_cls == IdentityNorm:
|
253 |
-
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
254 |
-
else:
|
255 |
-
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
256 |
-
|
257 |
-
if adaptive_layer_norm:
|
258 |
-
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
259 |
-
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
260 |
-
else:
|
261 |
-
self.norm1 = norm1
|
262 |
-
self.norm2 = norm2
|
263 |
-
|
264 |
-
def __setstate__(self, state):
|
265 |
-
super(TransformerEncoderLayer, self).__setstate__(state)
|
266 |
-
if not hasattr(self, "activation"):
|
267 |
-
self.activation = F.relu
|
268 |
-
|
269 |
-
def forward(
|
270 |
-
self,
|
271 |
-
src: Tensor,
|
272 |
-
src_mask: Optional[Tensor] = None,
|
273 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
274 |
-
cache=None,
|
275 |
-
) -> Tensor:
|
276 |
-
r"""Pass the input through the encoder layer.
|
277 |
-
|
278 |
-
Args:
|
279 |
-
src: the sequence to the encoder layer (required).
|
280 |
-
src_mask: the mask for the src sequence (optional).
|
281 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
282 |
-
|
283 |
-
Shape:
|
284 |
-
see the docs in Transformer class.
|
285 |
-
"""
|
286 |
-
x, stage_embedding = src, None
|
287 |
-
is_src_tuple = False
|
288 |
-
if isinstance(src, tuple):
|
289 |
-
x, stage_embedding = src
|
290 |
-
is_src_tuple = True
|
291 |
-
|
292 |
-
if src_key_padding_mask is not None:
|
293 |
-
_skpm_dtype = src_key_padding_mask.dtype
|
294 |
-
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
295 |
-
src_key_padding_mask
|
296 |
-
):
|
297 |
-
raise AssertionError(
|
298 |
-
"only bool and floating types of key_padding_mask are supported"
|
299 |
-
)
|
300 |
-
|
301 |
-
if self.norm_first:
|
302 |
-
x = x + self._sa_block(
|
303 |
-
self.norm1(x, stage_embedding),
|
304 |
-
src_mask,
|
305 |
-
src_key_padding_mask,
|
306 |
-
cache=cache,
|
307 |
-
)
|
308 |
-
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
309 |
-
else:
|
310 |
-
x = self.norm1(
|
311 |
-
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
312 |
-
stage_embedding,
|
313 |
-
)
|
314 |
-
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
315 |
-
|
316 |
-
if is_src_tuple:
|
317 |
-
return (x, stage_embedding)
|
318 |
-
return x
|
319 |
-
|
320 |
-
# self-attention block
|
321 |
-
def _sa_block(
|
322 |
-
self,
|
323 |
-
x: Tensor,
|
324 |
-
attn_mask: Optional[Tensor],
|
325 |
-
key_padding_mask: Optional[Tensor],
|
326 |
-
cache=None,
|
327 |
-
) -> Tensor:
|
328 |
-
# print(x.shape,attn_mask.shape,key_padding_mask)
|
329 |
-
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
330 |
-
# import os
|
331 |
-
# os._exit(23333)
|
332 |
-
x = self.self_attn(
|
333 |
-
x,
|
334 |
-
x,
|
335 |
-
x,
|
336 |
-
attn_mask=attn_mask,
|
337 |
-
key_padding_mask=key_padding_mask,
|
338 |
-
need_weights=False,
|
339 |
-
cache=cache,
|
340 |
-
)[0]
|
341 |
-
return self.dropout1(x)
|
342 |
-
|
343 |
-
# feed forward block
|
344 |
-
def _ff_block(self, x: Tensor) -> Tensor:
|
345 |
-
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
346 |
-
return self.dropout2(x)
|
347 |
-
|
348 |
-
|
349 |
-
class AdaptiveLayerNorm(nn.Module):
|
350 |
-
r"""Adaptive Layer Normalization"""
|
351 |
-
|
352 |
-
def __init__(self, d_model, norm) -> None:
|
353 |
-
super(AdaptiveLayerNorm, self).__init__()
|
354 |
-
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
355 |
-
self.norm = norm
|
356 |
-
self.d_model = d_model
|
357 |
-
self.eps = self.norm.eps
|
358 |
-
|
359 |
-
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
360 |
-
if isinstance(input, tuple):
|
361 |
-
input, embedding = input
|
362 |
-
weight, bias = torch.split(
|
363 |
-
self.project_layer(embedding),
|
364 |
-
split_size_or_sections=self.d_model,
|
365 |
-
dim=-1,
|
366 |
-
)
|
367 |
-
return (weight * self.norm(input) + bias, embedding)
|
368 |
-
|
369 |
-
weight, bias = torch.split(
|
370 |
-
self.project_layer(embedding),
|
371 |
-
split_size_or_sections=self.d_model,
|
372 |
-
dim=-1,
|
373 |
-
)
|
374 |
-
return weight * self.norm(input) + bias
|
375 |
-
|
376 |
-
|
377 |
-
def _get_clones(module, N):
|
378 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/transformer_onnx.py
DELETED
@@ -1,292 +0,0 @@
|
|
1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
2 |
-
import copy
|
3 |
-
import numbers
|
4 |
-
from functools import partial
|
5 |
-
from typing import Any
|
6 |
-
from typing import Callable
|
7 |
-
from typing import List
|
8 |
-
from typing import Optional
|
9 |
-
from typing import Tuple
|
10 |
-
from typing import Union
|
11 |
-
|
12 |
-
import torch
|
13 |
-
from AR.modules.activation_onnx import MultiheadAttention
|
14 |
-
from AR.modules.scaling import BalancedDoubleSwish
|
15 |
-
from torch import nn
|
16 |
-
from torch import Tensor
|
17 |
-
from torch.nn import functional as F
|
18 |
-
|
19 |
-
_shape_t = Union[int, List[int], torch.Size]
|
20 |
-
|
21 |
-
|
22 |
-
class LayerNorm(nn.Module):
|
23 |
-
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
24 |
-
normalized_shape: Tuple[int, ...]
|
25 |
-
eps: float
|
26 |
-
elementwise_affine: bool
|
27 |
-
|
28 |
-
def __init__(
|
29 |
-
self,
|
30 |
-
normalized_shape: _shape_t,
|
31 |
-
eps: float = 1e-5,
|
32 |
-
elementwise_affine: bool = True,
|
33 |
-
device=None,
|
34 |
-
dtype=None,
|
35 |
-
) -> None:
|
36 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
37 |
-
super(LayerNorm, self).__init__()
|
38 |
-
if isinstance(normalized_shape, numbers.Integral):
|
39 |
-
# mypy error: incompatible types in assignment
|
40 |
-
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
41 |
-
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
42 |
-
self.eps = eps
|
43 |
-
self.elementwise_affine = elementwise_affine
|
44 |
-
if self.elementwise_affine:
|
45 |
-
self.weight = nn.Parameter(
|
46 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
47 |
-
)
|
48 |
-
self.bias = nn.Parameter(
|
49 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
50 |
-
)
|
51 |
-
else:
|
52 |
-
self.register_parameter("weight", None)
|
53 |
-
self.register_parameter("bias", None)
|
54 |
-
|
55 |
-
self.reset_parameters()
|
56 |
-
|
57 |
-
def reset_parameters(self) -> None:
|
58 |
-
if self.elementwise_affine:
|
59 |
-
nn.init.ones_(self.weight)
|
60 |
-
nn.init.zeros_(self.bias)
|
61 |
-
|
62 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
63 |
-
if isinstance(input, tuple):
|
64 |
-
input, embedding = input
|
65 |
-
return (
|
66 |
-
F.layer_norm(
|
67 |
-
input,
|
68 |
-
self.normalized_shape,
|
69 |
-
self.weight,
|
70 |
-
self.bias,
|
71 |
-
self.eps,
|
72 |
-
),
|
73 |
-
embedding,
|
74 |
-
)
|
75 |
-
|
76 |
-
assert embedding is None
|
77 |
-
return F.layer_norm(
|
78 |
-
input, self.normalized_shape, self.weight, self.bias, self.eps
|
79 |
-
)
|
80 |
-
|
81 |
-
def extra_repr(self) -> str:
|
82 |
-
return (
|
83 |
-
"{normalized_shape}, eps={eps}, "
|
84 |
-
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
85 |
-
)
|
86 |
-
|
87 |
-
|
88 |
-
class IdentityNorm(nn.Module):
|
89 |
-
def __init__(
|
90 |
-
self,
|
91 |
-
d_model: int,
|
92 |
-
eps: float = 1e-5,
|
93 |
-
device=None,
|
94 |
-
dtype=None,
|
95 |
-
) -> None:
|
96 |
-
super(IdentityNorm, self).__init__()
|
97 |
-
|
98 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
99 |
-
if isinstance(input, tuple):
|
100 |
-
return input
|
101 |
-
|
102 |
-
assert embedding is None
|
103 |
-
return input
|
104 |
-
|
105 |
-
|
106 |
-
class TransformerEncoder(nn.Module):
|
107 |
-
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
108 |
-
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
109 |
-
|
110 |
-
Args:
|
111 |
-
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
112 |
-
num_layers: the number of sub-encoder-layers in the encoder (required).
|
113 |
-
norm: the layer normalization component (optional).
|
114 |
-
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
115 |
-
(and convert back on output). This will improve the overall performance of
|
116 |
-
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
117 |
-
|
118 |
-
Examples::
|
119 |
-
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
120 |
-
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
121 |
-
>>> src = torch.rand(10, 32, 512)
|
122 |
-
>>> out = transformer_encoder(src)
|
123 |
-
"""
|
124 |
-
__constants__ = ["norm"]
|
125 |
-
|
126 |
-
def __init__(self, encoder_layer, num_layers, norm=None):
|
127 |
-
super(TransformerEncoder, self).__init__()
|
128 |
-
self.layers = _get_clones(encoder_layer, num_layers)
|
129 |
-
self.num_layers = num_layers
|
130 |
-
self.norm = norm
|
131 |
-
|
132 |
-
def forward(
|
133 |
-
self,
|
134 |
-
src: Tensor,
|
135 |
-
mask: Optional[Tensor] = None,
|
136 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
137 |
-
return_layer_states: bool = False,
|
138 |
-
cache=None,
|
139 |
-
) -> Tensor:
|
140 |
-
output = src
|
141 |
-
for mod in self.layers:
|
142 |
-
output = mod(
|
143 |
-
output,
|
144 |
-
src_mask=mask,
|
145 |
-
src_key_padding_mask=src_key_padding_mask,
|
146 |
-
cache=cache,
|
147 |
-
)
|
148 |
-
|
149 |
-
if self.norm is not None:
|
150 |
-
output = self.norm(output)
|
151 |
-
|
152 |
-
return output
|
153 |
-
|
154 |
-
|
155 |
-
class TransformerEncoderLayer(nn.Module):
|
156 |
-
__constants__ = ["batch_first", "norm_first"]
|
157 |
-
def __init__(
|
158 |
-
self,
|
159 |
-
d_model: int,
|
160 |
-
nhead: int,
|
161 |
-
dim_feedforward: int = 2048,
|
162 |
-
dropout: float = 0.1,
|
163 |
-
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
164 |
-
batch_first: bool = False,
|
165 |
-
norm_first: bool = False,
|
166 |
-
device=None,
|
167 |
-
dtype=None,
|
168 |
-
linear1_self_attention_cls: nn.Module = nn.Linear,
|
169 |
-
linear2_self_attention_cls: nn.Module = nn.Linear,
|
170 |
-
linear1_feedforward_cls: nn.Module = nn.Linear,
|
171 |
-
linear2_feedforward_cls: nn.Module = nn.Linear,
|
172 |
-
layer_norm_cls: nn.Module = LayerNorm,
|
173 |
-
layer_norm_eps: float = 1e-5,
|
174 |
-
adaptive_layer_norm=False,
|
175 |
-
) -> None:
|
176 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
177 |
-
super(TransformerEncoderLayer, self).__init__()
|
178 |
-
self.self_attn = MultiheadAttention(
|
179 |
-
d_model, # 512 16
|
180 |
-
nhead,
|
181 |
-
dropout=dropout,
|
182 |
-
batch_first=batch_first,
|
183 |
-
linear1_cls=linear1_self_attention_cls,
|
184 |
-
linear2_cls=linear2_self_attention_cls,
|
185 |
-
**factory_kwargs,
|
186 |
-
)
|
187 |
-
self.linear1 = linear1_feedforward_cls(
|
188 |
-
d_model, dim_feedforward, **factory_kwargs
|
189 |
-
)
|
190 |
-
self.dropout = nn.Dropout(dropout)
|
191 |
-
self.linear2 = linear2_feedforward_cls(
|
192 |
-
dim_feedforward, d_model, **factory_kwargs
|
193 |
-
)
|
194 |
-
self.norm_first = norm_first
|
195 |
-
self.dropout1 = nn.Dropout(dropout)
|
196 |
-
self.dropout2 = nn.Dropout(dropout)
|
197 |
-
if isinstance(activation, str):
|
198 |
-
activation = _get_activation_fn(activation)
|
199 |
-
elif isinstance(activation, partial):
|
200 |
-
activation = activation(d_model)
|
201 |
-
elif activation == BalancedDoubleSwish:
|
202 |
-
activation = BalancedDoubleSwish(d_model)
|
203 |
-
self.activation = activation
|
204 |
-
|
205 |
-
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
206 |
-
if layer_norm_cls == IdentityNorm:
|
207 |
-
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
208 |
-
else:
|
209 |
-
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
210 |
-
|
211 |
-
if adaptive_layer_norm:
|
212 |
-
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
213 |
-
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
214 |
-
else:
|
215 |
-
self.norm1 = norm1
|
216 |
-
self.norm2 = norm2
|
217 |
-
|
218 |
-
def __setstate__(self, state):
|
219 |
-
super(TransformerEncoderLayer, self).__setstate__(state)
|
220 |
-
if not hasattr(self, "activation"):
|
221 |
-
self.activation = F.relu
|
222 |
-
|
223 |
-
def forward(
|
224 |
-
self,
|
225 |
-
src: Tensor,
|
226 |
-
src_mask: Optional[Tensor] = None,
|
227 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
228 |
-
cache=None,
|
229 |
-
) -> Tensor:
|
230 |
-
x = src
|
231 |
-
stage_embedding = None
|
232 |
-
x = self.norm1(
|
233 |
-
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
234 |
-
stage_embedding,
|
235 |
-
)
|
236 |
-
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
237 |
-
|
238 |
-
return x
|
239 |
-
|
240 |
-
def _sa_block(
|
241 |
-
self,
|
242 |
-
x: Tensor,
|
243 |
-
attn_mask: Optional[Tensor],
|
244 |
-
key_padding_mask: Optional[Tensor],
|
245 |
-
cache=None,
|
246 |
-
) -> Tensor:
|
247 |
-
x = self.self_attn(
|
248 |
-
x,
|
249 |
-
x,
|
250 |
-
x,
|
251 |
-
attn_mask=attn_mask,
|
252 |
-
key_padding_mask=key_padding_mask,
|
253 |
-
need_weights=False,
|
254 |
-
cache=cache,
|
255 |
-
)
|
256 |
-
return self.dropout1(x)
|
257 |
-
|
258 |
-
def _ff_block(self, x: Tensor) -> Tensor:
|
259 |
-
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
260 |
-
return self.dropout2(x)
|
261 |
-
|
262 |
-
|
263 |
-
class AdaptiveLayerNorm(nn.Module):
|
264 |
-
r"""Adaptive Layer Normalization"""
|
265 |
-
|
266 |
-
def __init__(self, d_model, norm) -> None:
|
267 |
-
super(AdaptiveLayerNorm, self).__init__()
|
268 |
-
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
269 |
-
self.norm = norm
|
270 |
-
self.d_model = d_model
|
271 |
-
self.eps = self.norm.eps
|
272 |
-
|
273 |
-
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
274 |
-
if isinstance(input, tuple):
|
275 |
-
input, embedding = input
|
276 |
-
weight, bias = torch.split(
|
277 |
-
self.project_layer(embedding),
|
278 |
-
split_size_or_sections=self.d_model,
|
279 |
-
dim=-1,
|
280 |
-
)
|
281 |
-
return (weight * self.norm(input) + bias, embedding)
|
282 |
-
|
283 |
-
weight, bias = torch.split(
|
284 |
-
self.project_layer(embedding),
|
285 |
-
split_size_or_sections=self.d_model,
|
286 |
-
dim=-1,
|
287 |
-
)
|
288 |
-
return weight * self.norm(input) + bias
|
289 |
-
|
290 |
-
|
291 |
-
def _get_clones(module, N):
|
292 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/text_processing/__init__.py
DELETED
File without changes
|
AR/text_processing/phonemizer.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/phonemizer.py
|
2 |
-
import itertools
|
3 |
-
import re
|
4 |
-
from typing import Dict
|
5 |
-
from typing import List
|
6 |
-
|
7 |
-
import regex
|
8 |
-
from gruut import sentences
|
9 |
-
from gruut.const import Sentence
|
10 |
-
from gruut.const import Word
|
11 |
-
from AR.text_processing.symbols import SYMBOL_TO_ID
|
12 |
-
|
13 |
-
|
14 |
-
class GruutPhonemizer:
|
15 |
-
def __init__(self, language: str):
|
16 |
-
self._phonemizer = sentences
|
17 |
-
self.lang = language
|
18 |
-
self.symbol_to_id = SYMBOL_TO_ID
|
19 |
-
self._special_cases_dict: Dict[str] = {
|
20 |
-
r"\.\.\.": "... ",
|
21 |
-
";": "; ",
|
22 |
-
":": ": ",
|
23 |
-
",": ", ",
|
24 |
-
r"\.": ". ",
|
25 |
-
"!": "! ",
|
26 |
-
r"\?": "? ",
|
27 |
-
"—": "—",
|
28 |
-
"…": "… ",
|
29 |
-
"«": "«",
|
30 |
-
"»": "»",
|
31 |
-
}
|
32 |
-
self._punctuation_regexp: str = (
|
33 |
-
rf"([{''.join(self._special_cases_dict.keys())}])"
|
34 |
-
)
|
35 |
-
|
36 |
-
def _normalize_punctuation(self, text: str) -> str:
|
37 |
-
text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
|
38 |
-
text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
39 |
-
text = regex.sub(r"\pZ+", r" ", text)
|
40 |
-
return text.strip()
|
41 |
-
|
42 |
-
def _convert_punctuation(self, word: Word) -> str:
|
43 |
-
if not word.phonemes:
|
44 |
-
return ""
|
45 |
-
if word.phonemes[0] in ["‖", "|"]:
|
46 |
-
return word.text.strip()
|
47 |
-
|
48 |
-
phonemes = "".join(word.phonemes)
|
49 |
-
# remove modifier characters ˈˌː with regex
|
50 |
-
phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
|
51 |
-
return phonemes.strip()
|
52 |
-
|
53 |
-
def phonemize(self, text: str, espeak: bool = False) -> str:
|
54 |
-
text_to_phonemize: str = self._normalize_punctuation(text)
|
55 |
-
sents: List[Sentence] = [
|
56 |
-
sent
|
57 |
-
for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)
|
58 |
-
]
|
59 |
-
words: List[str] = [
|
60 |
-
self._convert_punctuation(word) for word in itertools.chain(*sents)
|
61 |
-
]
|
62 |
-
return " ".join(words)
|
63 |
-
|
64 |
-
def transform(self, phonemes):
|
65 |
-
# convert phonemes to ids
|
66 |
-
# dictionary is in symbols.py
|
67 |
-
return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
|
68 |
-
|
69 |
-
|
70 |
-
if __name__ == "__main__":
|
71 |
-
phonemizer = GruutPhonemizer("en-us")
|
72 |
-
# text -> IPA
|
73 |
-
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
|
74 |
-
print("phonemes:", phonemes)
|
75 |
-
print("len(phonemes):", len(phonemes))
|
76 |
-
phoneme_ids = phonemizer.transform(phonemes)
|
77 |
-
print("phoneme_ids:", phoneme_ids)
|
78 |
-
print("len(phoneme_ids):", len(phoneme_ids))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/text_processing/symbols.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/text_processing/symbols.py
|
2 |
-
PAD = "_"
|
3 |
-
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
4 |
-
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
5 |
-
IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
6 |
-
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
7 |
-
SPACE_ID = SYMBOLS.index(" ")
|
8 |
-
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
|
9 |
-
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/utils/__init__.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
|
3 |
-
|
4 |
-
def str2bool(str):
|
5 |
-
return True if str.lower() == 'true' else False
|
6 |
-
|
7 |
-
|
8 |
-
def get_newest_ckpt(string_list):
|
9 |
-
# 定义一个正则表达式模式,用于匹配字符串中的数字
|
10 |
-
pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
|
11 |
-
|
12 |
-
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
|
13 |
-
extracted_info = []
|
14 |
-
for string in string_list:
|
15 |
-
match = re.match(pattern, string)
|
16 |
-
if match:
|
17 |
-
epoch = int(match.group(1))
|
18 |
-
step = int(match.group(2))
|
19 |
-
extracted_info.append((epoch, step, string))
|
20 |
-
# 按照 epoch 后面的数字和 step 后面的数字进行排序
|
21 |
-
sorted_info = sorted(
|
22 |
-
extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
|
23 |
-
# 获取最新的 ckpt 文件名
|
24 |
-
newest_ckpt = sorted_info[0][2]
|
25 |
-
return newest_ckpt
|
26 |
-
|
27 |
-
|
28 |
-
# 文本存在且不为空时 return True
|
29 |
-
def check_txt_file(file_path):
|
30 |
-
try:
|
31 |
-
with open(file_path, 'r') as file:
|
32 |
-
text = file.readline().strip()
|
33 |
-
assert text.strip() != ''
|
34 |
-
return text
|
35 |
-
except Exception:
|
36 |
-
return False
|
37 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/utils/initialize.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""Initialize modules for espnet2 neural networks."""
|
3 |
-
import torch
|
4 |
-
from typeguard import check_argument_types
|
5 |
-
|
6 |
-
|
7 |
-
def initialize(model: torch.nn.Module, init: str):
|
8 |
-
"""Initialize weights of a neural network module.
|
9 |
-
|
10 |
-
Parameters are initialized using the given method or distribution.
|
11 |
-
|
12 |
-
Custom initialization routines can be implemented into submodules
|
13 |
-
as function `espnet_initialization_fn` within the custom module.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
model: Target.
|
17 |
-
init: Method of initialization.
|
18 |
-
"""
|
19 |
-
assert check_argument_types()
|
20 |
-
print("init with", init)
|
21 |
-
|
22 |
-
# weight init
|
23 |
-
for p in model.parameters():
|
24 |
-
if p.dim() > 1:
|
25 |
-
if init == "xavier_uniform":
|
26 |
-
torch.nn.init.xavier_uniform_(p.data)
|
27 |
-
elif init == "xavier_normal":
|
28 |
-
torch.nn.init.xavier_normal_(p.data)
|
29 |
-
elif init == "kaiming_uniform":
|
30 |
-
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
31 |
-
elif init == "kaiming_normal":
|
32 |
-
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
33 |
-
else:
|
34 |
-
raise ValueError("Unknown initialization: " + init)
|
35 |
-
# bias init
|
36 |
-
for name, p in model.named_parameters():
|
37 |
-
if ".bias" in name and p.dim() == 1:
|
38 |
-
p.data.zero_()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/utils/io.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import sys
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import yaml
|
5 |
-
|
6 |
-
|
7 |
-
def load_yaml_config(path):
|
8 |
-
with open(path) as f:
|
9 |
-
config = yaml.full_load(f)
|
10 |
-
return config
|
11 |
-
|
12 |
-
|
13 |
-
def save_config_to_yaml(config, path):
|
14 |
-
assert path.endswith(".yaml")
|
15 |
-
with open(path, "w") as f:
|
16 |
-
f.write(yaml.dump(config))
|
17 |
-
f.close()
|
18 |
-
|
19 |
-
|
20 |
-
def write_args(args, path):
|
21 |
-
args_dict = dict(
|
22 |
-
(name, getattr(args, name)) for name in dir(args) if not name.startswith("_")
|
23 |
-
)
|
24 |
-
with open(path, "a") as args_file:
|
25 |
-
args_file.write("==> torch version: {}\n".format(torch.__version__))
|
26 |
-
args_file.write(
|
27 |
-
"==> cudnn version: {}\n".format(torch.backends.cudnn.version())
|
28 |
-
)
|
29 |
-
args_file.write("==> Cmd:\n")
|
30 |
-
args_file.write(str(sys.argv))
|
31 |
-
args_file.write("\n==> args:\n")
|
32 |
-
for k, v in sorted(args_dict.items()):
|
33 |
-
args_file.write(" %s: %s\n" % (str(k), str(v)))
|
34 |
-
args_file.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODELS/21/1.wav → BV2/MODELS/AW.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ba8e41d9c1532613eca7ced91009e9f299084930333f8a740c7e9575fedb3fd
|
3 |
+
size 629528157
|
MODELS/21/11.wav → BV2/MODELS/Arasaka.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55bdc20685b241804e1995a6ba313ac0ea19165923d8b15e0183798be4b5409e
|
3 |
+
size 629528157
|
MODELS/21/191.wav → BV2/MODELS/HER_1100.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0053eb1b3d39c3f818cb18bc257b9f3a33e123a403bba22e4b31f140e91d939b
|
3 |
+
size 629528157
|
MODELS/21/21.ckpt → BV2/MODELS/J8900.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff06d3d66c98aaf8eb827668db9b78542244e87d4dddf791171ab981f5aad65b
|
3 |
+
size 629528157
|
BV2/MODELS/TERRA.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa400e907a126dc17d4eaca412f9ca7832844ea0964c8319b01dc99610ce13e1
|
3 |
+
size 629528157
|
BV2/MODELS/adorabledarling.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:434ffd70ae4e3688bbfac4a5618363991f24e1205223ccbddcc2218a1d79d313
|
3 |
+
size 629528157
|
BV2/MODELS/hypno.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f47be236069bc0254d188c479fef99dbd4d2d908fb5b6444d5ddfd1f45caae0a
|
3 |
+
size 629528157
|
BV2/MODELS/nikki9400.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:054643d67df92d4040b4f90d8d82d58457adc9611f03eec1806ecbebe8a00205
|
3 |
+
size 629528157
|
BV2/MODELS/premj.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0197dfe39dd9f87008bc68e271545a17d5836ab1b5fd876beea5295dbe9e6182
|
3 |
+
size 629528157
|
BV2/MODELS/rabbit4900.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:087be2e67ea98eff8937cf97a752be6386e803e6e7c4e2bbfdf684f30cf677ad
|
3 |
+
size 629528157
|
BV2/MODELS/take2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:659a8f3887e007e2917fe8a42902cc88ef82d0b852b04178d3a0f2ef0a704d10
|
3 |
+
size 629528157
|
BV2/MODELS/v3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9b3ec8e49f19a41ef6601a35d3cd5bed2f0a5fa3d7c90c064726206675aa746
|
3 |
+
size 629528157
|
{AR → BV2}/__init__.py
RENAMED
File without changes
|
BV2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (139 Bytes). View file
|
|
BV2/__pycache__/attentions.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
BV2/__pycache__/commons.cpython-310.pyc
ADDED
Binary file (5.75 kB). View file
|
|
BV2/__pycache__/models.cpython-310.pyc
ADDED
Binary file (20.2 kB). View file
|
|
BV2/__pycache__/modules.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
BV2/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (3.9 kB). View file
|
|
BV2/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
BV2/attentions.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from . import commons
|
9 |
+
from . import modules
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
class LayerNorm(nn.Module):
|
12 |
+
def __init__(self, channels, eps=1e-5):
|
13 |
+
super().__init__()
|
14 |
+
self.channels = channels
|
15 |
+
self.eps = eps
|
16 |
+
|
17 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
18 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = x.transpose(1, -1)
|
22 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
23 |
+
return x.transpose(1, -1)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
@torch.jit.script
|
28 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
29 |
+
n_channels_int = n_channels[0]
|
30 |
+
in_act = input_a + input_b
|
31 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
32 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
33 |
+
acts = t_act * s_act
|
34 |
+
return acts
|
35 |
+
|
36 |
+
class Encoder(nn.Module):
|
37 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, isflow = True, **kwargs):
|
38 |
+
super().__init__()
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.filter_channels = filter_channels
|
41 |
+
self.n_heads = n_heads
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.kernel_size = kernel_size
|
44 |
+
self.p_dropout = p_dropout
|
45 |
+
self.window_size = window_size
|
46 |
+
if isflow:
|
47 |
+
cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
48 |
+
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
49 |
+
self.cond_layer = weight_norm(cond_layer, name='weight')
|
50 |
+
self.gin_channels = 256
|
51 |
+
self.cond_layer_idx = self.n_layers
|
52 |
+
if 'gin_channels' in kwargs:
|
53 |
+
self.gin_channels = kwargs['gin_channels']
|
54 |
+
if self.gin_channels != 0:
|
55 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
56 |
+
# vits2 says 3rd block, so idx is 2 by default
|
57 |
+
self.cond_layer_idx = kwargs['cond_layer_idx'] if 'cond_layer_idx' in kwargs else 2
|
58 |
+
print(self.gin_channels, self.cond_layer_idx)
|
59 |
+
assert self.cond_layer_idx < self.n_layers, 'cond_layer_idx should be less than n_layers'
|
60 |
+
self.drop = nn.Dropout(p_dropout)
|
61 |
+
self.attn_layers = nn.ModuleList()
|
62 |
+
self.norm_layers_1 = nn.ModuleList()
|
63 |
+
self.ffn_layers = nn.ModuleList()
|
64 |
+
self.norm_layers_2 = nn.ModuleList()
|
65 |
+
for i in range(self.n_layers):
|
66 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
67 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
68 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
69 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
70 |
+
def forward(self, x, x_mask, g=None):
|
71 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
72 |
+
x = x * x_mask
|
73 |
+
for i in range(self.n_layers):
|
74 |
+
if i == self.cond_layer_idx and g is not None:
|
75 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
76 |
+
g = g.transpose(1, 2)
|
77 |
+
x = x + g
|
78 |
+
x = x * x_mask
|
79 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
80 |
+
y = self.drop(y)
|
81 |
+
x = self.norm_layers_1[i](x + y)
|
82 |
+
|
83 |
+
y = self.ffn_layers[i](x, x_mask)
|
84 |
+
y = self.drop(y)
|
85 |
+
x = self.norm_layers_2[i](x + y)
|
86 |
+
x = x * x_mask
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
class Decoder(nn.Module):
|
91 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
92 |
+
super().__init__()
|
93 |
+
self.hidden_channels = hidden_channels
|
94 |
+
self.filter_channels = filter_channels
|
95 |
+
self.n_heads = n_heads
|
96 |
+
self.n_layers = n_layers
|
97 |
+
self.kernel_size = kernel_size
|
98 |
+
self.p_dropout = p_dropout
|
99 |
+
self.proximal_bias = proximal_bias
|
100 |
+
self.proximal_init = proximal_init
|
101 |
+
|
102 |
+
self.drop = nn.Dropout(p_dropout)
|
103 |
+
self.self_attn_layers = nn.ModuleList()
|
104 |
+
self.norm_layers_0 = nn.ModuleList()
|
105 |
+
self.encdec_attn_layers = nn.ModuleList()
|
106 |
+
self.norm_layers_1 = nn.ModuleList()
|
107 |
+
self.ffn_layers = nn.ModuleList()
|
108 |
+
self.norm_layers_2 = nn.ModuleList()
|
109 |
+
for i in range(self.n_layers):
|
110 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
111 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
112 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
113 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
114 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
115 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
116 |
+
|
117 |
+
def forward(self, x, x_mask, h, h_mask):
|
118 |
+
"""
|
119 |
+
x: decoder input
|
120 |
+
h: encoder output
|
121 |
+
"""
|
122 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
123 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
124 |
+
x = x * x_mask
|
125 |
+
for i in range(self.n_layers):
|
126 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
127 |
+
y = self.drop(y)
|
128 |
+
x = self.norm_layers_0[i](x + y)
|
129 |
+
|
130 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
131 |
+
y = self.drop(y)
|
132 |
+
x = self.norm_layers_1[i](x + y)
|
133 |
+
|
134 |
+
y = self.ffn_layers[i](x, x_mask)
|
135 |
+
y = self.drop(y)
|
136 |
+
x = self.norm_layers_2[i](x + y)
|
137 |
+
x = x * x_mask
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class MultiHeadAttention(nn.Module):
|
142 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
143 |
+
super().__init__()
|
144 |
+
assert channels % n_heads == 0
|
145 |
+
|
146 |
+
self.channels = channels
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.n_heads = n_heads
|
149 |
+
self.p_dropout = p_dropout
|
150 |
+
self.window_size = window_size
|
151 |
+
self.heads_share = heads_share
|
152 |
+
self.block_length = block_length
|
153 |
+
self.proximal_bias = proximal_bias
|
154 |
+
self.proximal_init = proximal_init
|
155 |
+
self.attn = None
|
156 |
+
|
157 |
+
self.k_channels = channels // n_heads
|
158 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
159 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
160 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
161 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
162 |
+
self.drop = nn.Dropout(p_dropout)
|
163 |
+
|
164 |
+
if window_size is not None:
|
165 |
+
n_heads_rel = 1 if heads_share else n_heads
|
166 |
+
rel_stddev = self.k_channels**-0.5
|
167 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
168 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
169 |
+
|
170 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
171 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
172 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
173 |
+
if proximal_init:
|
174 |
+
with torch.no_grad():
|
175 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
176 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
177 |
+
|
178 |
+
def forward(self, x, c, attn_mask=None):
|
179 |
+
q = self.conv_q(x)
|
180 |
+
k = self.conv_k(c)
|
181 |
+
v = self.conv_v(c)
|
182 |
+
|
183 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
184 |
+
|
185 |
+
x = self.conv_o(x)
|
186 |
+
return x
|
187 |
+
|
188 |
+
def attention(self, query, key, value, mask=None):
|
189 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
190 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
191 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
192 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
193 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
194 |
+
|
195 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
196 |
+
if self.window_size is not None:
|
197 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
198 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
199 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
200 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
201 |
+
scores = scores + scores_local
|
202 |
+
if self.proximal_bias:
|
203 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
204 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
205 |
+
if mask is not None:
|
206 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
207 |
+
if self.block_length is not None:
|
208 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
209 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
210 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
211 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
212 |
+
p_attn = self.drop(p_attn)
|
213 |
+
output = torch.matmul(p_attn, value)
|
214 |
+
if self.window_size is not None:
|
215 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
216 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
217 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
218 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
219 |
+
return output, p_attn
|
220 |
+
|
221 |
+
def _matmul_with_relative_values(self, x, y):
|
222 |
+
"""
|
223 |
+
x: [b, h, l, m]
|
224 |
+
y: [h or 1, m, d]
|
225 |
+
ret: [b, h, l, d]
|
226 |
+
"""
|
227 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
228 |
+
return ret
|
229 |
+
|
230 |
+
def _matmul_with_relative_keys(self, x, y):
|
231 |
+
"""
|
232 |
+
x: [b, h, l, d]
|
233 |
+
y: [h or 1, m, d]
|
234 |
+
ret: [b, h, l, m]
|
235 |
+
"""
|
236 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
237 |
+
return ret
|
238 |
+
|
239 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
240 |
+
max_relative_position = 2 * self.window_size + 1
|
241 |
+
# Pad first before slice to avoid using cond ops.
|
242 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
243 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
244 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
245 |
+
if pad_length > 0:
|
246 |
+
padded_relative_embeddings = F.pad(
|
247 |
+
relative_embeddings,
|
248 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
249 |
+
else:
|
250 |
+
padded_relative_embeddings = relative_embeddings
|
251 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
252 |
+
return used_relative_embeddings
|
253 |
+
|
254 |
+
def _relative_position_to_absolute_position(self, x):
|
255 |
+
"""
|
256 |
+
x: [b, h, l, 2*l-1]
|
257 |
+
ret: [b, h, l, l]
|
258 |
+
"""
|
259 |
+
batch, heads, length, _ = x.size()
|
260 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
261 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
262 |
+
|
263 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
264 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
265 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
266 |
+
|
267 |
+
# Reshape and slice out the padded elements.
|
268 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
269 |
+
return x_final
|
270 |
+
|
271 |
+
def _absolute_position_to_relative_position(self, x):
|
272 |
+
"""
|
273 |
+
x: [b, h, l, l]
|
274 |
+
ret: [b, h, l, 2*l-1]
|
275 |
+
"""
|
276 |
+
batch, heads, length, _ = x.size()
|
277 |
+
# padd along column
|
278 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
279 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
280 |
+
# add 0's in the beginning that will skew the elements after reshape
|
281 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
282 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
283 |
+
return x_final
|
284 |
+
|
285 |
+
def _attention_bias_proximal(self, length):
|
286 |
+
"""Bias for self-attention to encourage attention to close positions.
|
287 |
+
Args:
|
288 |
+
length: an integer scalar.
|
289 |
+
Returns:
|
290 |
+
a Tensor with shape [1, 1, length, length]
|
291 |
+
"""
|
292 |
+
r = torch.arange(length, dtype=torch.float32)
|
293 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
294 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
295 |
+
|
296 |
+
|
297 |
+
class FFN(nn.Module):
|
298 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
299 |
+
super().__init__()
|
300 |
+
self.in_channels = in_channels
|
301 |
+
self.out_channels = out_channels
|
302 |
+
self.filter_channels = filter_channels
|
303 |
+
self.kernel_size = kernel_size
|
304 |
+
self.p_dropout = p_dropout
|
305 |
+
self.activation = activation
|
306 |
+
self.causal = causal
|
307 |
+
|
308 |
+
if causal:
|
309 |
+
self.padding = self._causal_padding
|
310 |
+
else:
|
311 |
+
self.padding = self._same_padding
|
312 |
+
|
313 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
314 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
315 |
+
self.drop = nn.Dropout(p_dropout)
|
316 |
+
|
317 |
+
def forward(self, x, x_mask):
|
318 |
+
x = self.conv_1(self.padding(x * x_mask))
|
319 |
+
if self.activation == "gelu":
|
320 |
+
x = x * torch.sigmoid(1.702 * x)
|
321 |
+
else:
|
322 |
+
x = torch.relu(x)
|
323 |
+
x = self.drop(x)
|
324 |
+
x = self.conv_2(self.padding(x * x_mask))
|
325 |
+
return x * x_mask
|
326 |
+
|
327 |
+
def _causal_padding(self, x):
|
328 |
+
if self.kernel_size == 1:
|
329 |
+
return x
|
330 |
+
pad_l = self.kernel_size - 1
|
331 |
+
pad_r = 0
|
332 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
333 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
334 |
+
return x
|
335 |
+
|
336 |
+
def _same_padding(self, x):
|
337 |
+
if self.kernel_size == 1:
|
338 |
+
return x
|
339 |
+
pad_l = (self.kernel_size - 1) // 2
|
340 |
+
pad_r = self.kernel_size // 2
|
341 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
342 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
343 |
+
return x
|