Multi-voice-TTS / app.py
Ailyth's picture
Update app.py
34be6b7 verified
import sys, os
sys.path.append('BV2')
import torch
import argparse
import BV2.commons
import BV2.utils
from BV2.models import Synthesizer
from BV2.text.symbols import symbols
from BV2.text import cleaned_text_to_sequence, get_bert
from BV2.text.cleaner import clean_text
import gradio as gr
import soundfile as sf
from datetime import datetime
import pytz
tz = pytz.timezone('Asia/Shanghai')
net_g = None
models = {
"Mellowdear": "./BV2/MODELS/adorabledarling.pth",
"MistyNikki": "./BV2/MODELS/nikki9400.pth",
"Silverleg": "./BV2/MODELS/J8900.pth",
"Xelo": "./BV2/MODELS/HER_1100.pth",
"Rrabbitt": "./BV2/MODELS/rabbit4900.pth",
"VVV": "./BV2/MODELS/v3.pth",
"AlluWin": "./BV2/MODELS/AW.pth",
"Hypnosia": "./BV2/MODELS/hypno.pth",
"PremJ": "./BV2/MODELS/premj.pth",
"Umemura": "./BV2/MODELS/take2.pth",
"ArasakaAI": "./BV2/MODELS/Arasaka.pth",
"Terra": "./BV2/MODELS/TERRA.pth",
}
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = BV2.commons.intersperse(phone, 0)
tone = BV2.commons.intersperse(tone, 0)
language = BV2.commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", HPS)
with torch.no_grad():
x_tst=phones.to(devicee).unsqueeze(0)
tones=tones.to(devicee).unsqueeze(0)
lang_ids=lang_ids.to(devicee).unsqueeze(0)
bert = bert.to(devicee).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(devicee)
del phones
speakers = torch.LongTensor([HPS.data.spk2id[sid]]).to(devicee)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
sf.write("tmp.wav", audio, 44100)
return audio
def convert_wav_to_mp3(wav_file):
now = datetime.now(tz).strftime('%m%d%H%M%S')
os.makedirs('out', exist_ok=True)
output_path_mp3 = os.path.join('out', f"{now}.mp3")
renamed_input_path = os.path.join('in', f"in.wav")
os.makedirs('in', exist_ok=True)
os.rename(wav_file.name, renamed_input_path)
command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
os.system(" ".join(command))
return output_path_mp3
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
global net_g,speakers,tz
now = datetime.now(tz).strftime('%m-%d %H:%M:%S')
model_path = models[model]
net_g, _, _, _ = BV2.utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
print(f'✨{now}-开始生成:{text}')
try:
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
with open('tmp.wav', 'rb') as wav_file:
mp3 = convert_wav_to_mp3(wav_file)
return "生成语音成功", (HPS.data.sampling_rate, audio), mp3
except Exception as e:
return "生成语音失败:" + str(e), None, None
current_dir = os.path.dirname(os.path.abspath(__file__))
config_path = os.path.join(current_dir, "BV2/configs/config.json")
if __name__ == "__main__":
HPS = BV2.utils.get_hparams_from_file(config_path)
devicee = "cuda:0" if torch.cuda.is_available() else "cpu"
net_g = Synthesizer(
len(symbols),
HPS.data.filter_length // 2 + 1,
HPS.train.segment_size // HPS.data.hop_length,
n_speakers=HPS.data.n_speakers,
**HPS.model).to(devicee)
_ = net_g.eval()
speaker_ids = HPS.data.spk2id
speaker = list(speaker_ids.keys())[0]
theme='remilia/Ghostly'
with gr.Blocks(theme=theme) as app:
with gr.Column():
with gr.Column():
gr.HTML('''<br><br>
<p style="margin-bottom: 10px; font-size: 120%">
Use <b>English</b> to generate, please go to this <a href="https://huggingface.co./spaces/Ailyth/Multi-voice-TTS-GPT-SoVITS" target="_blank">SPACE</a>
</p>
<p style="margin-bottom: 10px; font-size: 110%">
<b>日本語</b>で生成するために、<a href="https://huggingface.co./spaces/Ailyth/Multi-voice-TTS-GPT-SoVITS" target="_blank">こちら</a>へ進んでください。
</p>''')
gr.HTML('''
<hr>
<p style="margin-bottom: 10px; font-size: 130%"><strong>以下仅供测试用,质量参差</strong>Only read Chinese</p>
<p>
模型训练以及推理基于开源项目<a href="https://github.com/fishaudio/Bert-VITS2">Bert-VITS2</a>
(具体使用的是9月份的版本,可能后续项目效果更好,请自行尝试训练)</p>
''')
text = gr.TextArea(label="输入需要生成语音的文字(标点也会影响语气)", placeholder="输入文字",
value="今天拿白金了吗",
info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字。字数越多,生成速度越慢,请耐心等待,只会说中文。",
)
model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='声音模型')
with gr.Accordion(label="展开设置生成参数", open=False):
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
btn = gr.Button("✨生成", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="试听")
MP3_output = gr.File(label="💾下载")
text_output = gr.Textbox(label="调试信息")
gr.Markdown("""
""")
btn.click(
tts_generator,
inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
outputs=[text_output, audio_output,MP3_output]
)
gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP99" /></div>''')
app.launch(share=True)