import streamlit as st from transformers import pipeline sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7") increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9") ner_model = pipeline("token-classification", model="AhmedTaha012/finance-ner-v0.0.8-finetuned-ner") st.title("Transcript Analysis") transcript = st.text_area("Enter the transcript:", height=200) if st.button("Analyze"): st.subheader("Sentiment Analysis") sentiment = sentiment_model(transcript)[0]['label'] sentiment_color = "green" if sentiment == "POSITIVE" else "red" st.markdown(f'{sentiment}', unsafe_allow_html=True) st.subheader("Increase/Decrease Prediction") increase_decrease = increase_decrease_model(transcript)[0]['label'] increase_decrease_color = "green" if increase_decrease == "INCREASE" else "red" st.markdown(f'{increase_decrease}', unsafe_allow_html=True) st.subheader("NER Metrics") ner_result = ner_model(transcript) revenue = next((entity['entity'] for entity in ner_result if entity['entity'] == 'revenue'), None) if revenue: st.write(f"Revenue: {revenue}") else: st.write("Revenue not found.") show_details = st.checkbox("Show Detailed Predictions") if show_details: st.subheader("Detailed Predictions") st.json({ "Sentiment Analysis": sentiment, "Increase/Decrease Prediction": increase_decrease, "NER Metrics": ner_result })