import streamlit as st
from transformers import pipeline
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
ner_model = pipeline("token-classification", model="AhmedTaha012/finance-ner-v0.0.8-finetuned-ner")
st.title("Transcript Analysis")
transcript = st.text_area("Enter the transcript:", height=200)
if st.button("Analyze"):
st.subheader("Sentiment Analysis")
sentiment = sentiment_model(transcript)[0]['label']
sentiment_color = "green" if sentiment == "POSITIVE" else "red"
st.markdown(f'{sentiment}', unsafe_allow_html=True)
st.subheader("Increase/Decrease Prediction")
increase_decrease = increase_decrease_model(transcript)[0]['label']
increase_decrease_color = "green" if increase_decrease == "INCREASE" else "red"
st.markdown(f'{increase_decrease}', unsafe_allow_html=True)
st.subheader("NER Metrics")
ner_result = ner_model(transcript)
revenue = next((entity['entity'] for entity in ner_result if entity['entity'] == 'revenue'), None)
if revenue:
st.write(f"Revenue: {revenue}")
else:
st.write("Revenue not found.")
show_details = st.checkbox("Show Detailed Predictions")
if show_details:
st.subheader("Detailed Predictions")
st.json({
"Sentiment Analysis": sentiment,
"Increase/Decrease Prediction": increase_decrease,
"NER Metrics": ner_result
})