import streamlit as st from transformers import pipeline import math import nltk from nltk.corpus import stopwords nltk.download('punkt') nltk.download('stopwords') sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7") increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9") ner_model = pipeline("token-classification", model="AhmedTaha012/finance-ner-v0.0.9-finetuned-ner") def getSpeakers(data): if "Speakers" in data: return "\n".join([x for x in data.split("Speakers")[-1].split("\n") if "--" in x]) elif "Call participants" in data: return "\n".join([x for x in data.split("Call participants")[-1].split("\n") if "--" in x]) elif "Call Participants" in data: return "\n".join([x for x in data.split("Call Participants")[-1].split("\n") if "--" in x]) def removeSpeakers(data): if "Speakers" in data: return data.split("Speakers")[0] elif "Call participants" in data: return data.split("Call participants")[0] elif "Call Participants" in data: return data.split("Call Participants")[0] def getQA(data): if "Questions and Answers" in data: return data.split("Questions and Answers")[-1] elif "Questions & Answers" in data: return data.split("Questions & Answers")[-1] elif "Q&A" in data: return data.split("Q&A")[-1] else: return "" def removeQA(data): if "Questions and Answers" in data: return data.split("Questions and Answers")[0] elif "Questions & Answers" in data: return data.split("Questions & Answers")[0] elif "Q&A" in data: return data.split("Q&A")[0] else: return "" def clean_and_preprocess(text): text=[x for x in text.split("\n") if len(x)>100] l=[] for t in text: # Convert to lowercase t = t.lower() # Tokenize text into words words = nltk.word_tokenize(t) # Remove stopwords stop_words = set(stopwords.words('english')) filtered_words = [word for word in words if word not in stop_words] # Join the words back into a cleaned text cleaned_text = ' '.join(filtered_words) l.append(cleaned_text) return "\n".join(l) def replace_abbreviations(text): replacements = { 'Q1': 'first quarter', 'Q2': 'second quarter', 'Q3': 'third quarter', 'Q4': 'fourth quarter', 'q1': 'first quarter', 'q2': 'second quarter', 'q3': 'third quarter', 'q4': 'fourth quarter', 'FY': 'fiscal year', 'YoY': 'year over year', 'MoM': 'month over month', 'EBITDA': 'earnings before interest, taxes, depreciation, and amortization', 'ROI': 'return on investment', 'EPS': 'earnings per share', 'P/E': 'price-to-earnings', 'DCF': 'discounted cash flow', 'CAGR': 'compound annual growth rate', 'GDP': 'gross domestic product', 'CFO': 'chief financial officer', 'GAAP': 'generally accepted accounting principles', 'SEC': 'U.S. Securities and Exchange Commission', 'IPO': 'initial public offering', 'M&A': 'mergers and acquisitions', 'EBIT': 'earnings before interest and taxes', 'IRR': 'internal rate of return', 'ROA': 'return on assets', 'ROE': 'return on equity', 'NAV': 'net asset value', 'PE ratio': 'price-to-earnings ratio', 'EPS growth': 'earnings per share growth', 'Fiscal Year': 'financial year', 'CAPEX': 'capital expenditure', 'APR': 'annual percentage rate', 'P&L': 'profit and loss', 'NPM': 'net profit margin', 'EBT': 'earnings before taxes', 'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent', 'PAT': 'profit after tax', 'COGS': 'cost of goods sold', 'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization', 'E&Y': 'Ernst & Young', 'B2B': 'business to business', 'B2C': 'business to consumer', 'LIFO': 'last in, first out', 'FIFO': 'first in, first out', 'FCF': 'free cash flow', 'LTM': 'last twelve months', 'OPEX': 'operating expenses', 'TSR': 'total shareholder return', 'PP&E': 'property, plant, and equipment', 'PBT': 'profit before tax', 'EBITDAR margin': 'earnings before interest, taxes, depreciation, amortization, and rent margin', 'ROIC': 'return on invested capital', 'EPS': 'earnings per share', 'P/E': 'price-to-earnings', 'EBITDA': 'earnings before interest, taxes, depreciation, and amortization', 'YOY': 'year-over-year', 'MOM': 'month-over-month', 'CAGR': 'compound annual growth rate', 'GDP': 'gross domestic product', 'ROI': 'return on investment', 'ROE': 'return on equity', 'EBIT': 'earnings before interest and taxes', 'DCF': 'discounted cash flow', 'GAAP': 'Generally Accepted Accounting Principles', 'LTM': 'last twelve months', 'EBIT margin': 'earnings before interest and taxes margin', 'EBT': 'earnings before taxes', 'EBTA': 'earnings before taxes and amortization', 'FTE': 'full-time equivalent', 'EBIDTA': 'earnings before interest, depreciation, taxes, and amortization', 'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization', 'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent', 'COGS': 'cost of goods sold', 'APR': 'annual percentage rate', 'PESTEL': 'Political, Economic, Social, Technological, Environmental, and Legal', 'KPI': 'key performance indicator', 'SWOT': 'Strengths, Weaknesses, Opportunities, Threats', 'CAPEX': 'capital expenditures', 'EBITDARM': 'earnings before interest, taxes, depreciation, amortization, rent, and management fees', 'EBITDAX': 'earnings before interest, taxes, depreciation, amortization, and exploration expenses', 'EBITDAS': 'earnings before interest, taxes, depreciation, amortization, and restructuring costs', 'EBITDAX-C': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and commodity derivatives', 'EBITDAX-R': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and asset retirement obligations', 'EBITDAX-E': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and environmental liabilities' # Add more abbreviations and replacements as needed } for abbreviation, full_form in replacements.items(): text = text.replace(abbreviation, full_form) return text def clean_and_preprocess(text): text=[x for x in text.split("\n") if len(x)>100] l=[] for t in text: # Convert to lowercase t = t.lower() # Tokenize text into words words = nltk.word_tokenize(t) # Remove stopwords stop_words = set(stopwords.words('english')) filtered_words = [word for word in words if word not in stop_words] # Join the words back into a cleaned text cleaned_text = ' '.join(filtered_words) l.append(cleaned_text) return "\n".join(l) st.title("Transcript Analysis") transcript = st.text_area("Enter the transcript:", height=200) if st.button("Analyze"): transcript=replace_abbreviations(transcript) transcript=replace_abbreviations(transcript) transcript=removeSpeakers(transcript) transcript=removeQA(transcript) transcript=clean_and_preprocess(transcript) tokens=transcript.split() splitSize=256 chunks=[tokens[r*splitSize:(r+1)*splitSize] for r in range(math.ceil(len(tokens)/splitSize))] st.subheader("Sentiment Analysis") sentiment = [sentiment_model(x)[0]['label'] for x in chunks] sentiment=max(sentiment,key=sentiment.count) sentiment_color = "green" if sentiment == "POSITIVE" else "red" st.markdown(f'{sentiment}', unsafe_allow_html=True) st.subheader("Increase/Decrease Prediction") increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks] increase_decrease=max(increase_decrease,key=increase_decrease.count) increase_decrease_color = "green" if increase_decrease == "INCREASE" else "red" st.markdown(f'{increase_decrease}', unsafe_allow_html=True) st.subheader("NER Metrics") ner_result = [ner_model(x) for x in chunks] st.write(str(ner_result))