import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer,AutoModelForTokenClassification
import math
import nltk
import torch
from nltk.corpus import stopwords
import spacy
from spacy import displacy
from word2number import w2n
nltk.download('punkt')
nltk.download('stopwords')
nlp = spacy.load('en_core_web_md')
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
tokenizer = AutoTokenizer.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
# torch.compile(model)
nlpPipe = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
def getSpeakers(data):
if "Speakers" in data:
return "\n".join([x for x in data.split("Speakers")[-1].split("\n") if "--" in x])
elif "Call participants" in data:
return "\n".join([x for x in data.split("Call participants")[-1].split("\n") if "--" in x])
elif "Call Participants" in data:
return "\n".join([x for x in data.split("Call Participants")[-1].split("\n") if "--" in x])
def removeSpeakers(data):
if "Speakers" in data:
return data.split("Speakers")[0]
elif "Call participants" in data:
return data.split("Call participants")[0]
elif "Call Participants" in data:
return data.split("Call Participants")[0]
def getQA(data):
if "Questions and Answers" in data:
return data.split("Questions and Answers")[-1]
elif "Questions & Answers" in data:
return data.split("Questions & Answers")[-1]
elif "Q&A" in data:
return data.split("Q&A")[-1]
else:
return ""
def removeQA(data):
if "Questions and Answers" in data:
return data.split("Questions and Answers")[0]
elif "Questions & Answers" in data:
return data.split("Questions & Answers")[0]
elif "Q&A" in data:
return data.split("Q&A")[0]
else:
return ""
def clean_and_preprocess(text):
text=[x for x in text.split("\n") if len(x)>100]
l=[]
for t in text:
# Convert to lowercase
t = t.lower()
# Tokenize text into words
words = nltk.word_tokenize(t)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
# Join the words back into a cleaned text
cleaned_text = ' '.join(filtered_words)
l.append(cleaned_text)
return "\n".join(l)
def replace_abbreviations(text):
replacements = {
'Q1': 'first quarter',
'Q2': 'second quarter',
'Q3': 'third quarter',
'Q4': 'fourth quarter',
'q1': 'first quarter',
'q2': 'second quarter',
'q3': 'third quarter',
'q4': 'fourth quarter',
'FY': 'fiscal year',
'YoY': 'year over year',
'MoM': 'month over month',
'EBITDA': 'earnings before interest, taxes, depreciation, and amortization',
'ROI': 'return on investment',
'EPS': 'earnings per share',
'P/E': 'price-to-earnings',
'DCF': 'discounted cash flow',
'CAGR': 'compound annual growth rate',
'GDP': 'gross domestic product',
'CFO': 'chief financial officer',
'GAAP': 'generally accepted accounting principles',
'SEC': 'U.S. Securities and Exchange Commission',
'IPO': 'initial public offering',
'M&A': 'mergers and acquisitions',
'EBIT': 'earnings before interest and taxes',
'IRR': 'internal rate of return',
'ROA': 'return on assets',
'ROE': 'return on equity',
'NAV': 'net asset value',
'PE ratio': 'price-to-earnings ratio',
'EPS growth': 'earnings per share growth',
'Fiscal Year': 'financial year',
'CAPEX': 'capital expenditure',
'APR': 'annual percentage rate',
'P&L': 'profit and loss',
'NPM': 'net profit margin',
'EBT': 'earnings before taxes',
'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent',
'PAT': 'profit after tax',
'COGS': 'cost of goods sold',
'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization',
'E&Y': 'Ernst & Young',
'B2B': 'business to business',
'B2C': 'business to consumer',
'LIFO': 'last in, first out',
'FIFO': 'first in, first out',
'FCF': 'free cash flow',
'LTM': 'last twelve months',
'OPEX': 'operating expenses',
'TSR': 'total shareholder return',
'PP&E': 'property, plant, and equipment',
'PBT': 'profit before tax',
'EBITDAR margin': 'earnings before interest, taxes, depreciation, amortization, and rent margin',
'ROIC': 'return on invested capital',
'EPS': 'earnings per share',
'P/E': 'price-to-earnings',
'EBITDA': 'earnings before interest, taxes, depreciation, and amortization',
'YOY': 'year-over-year',
'MOM': 'month-over-month',
'CAGR': 'compound annual growth rate',
'GDP': 'gross domestic product',
'ROI': 'return on investment',
'ROE': 'return on equity',
'EBIT': 'earnings before interest and taxes',
'DCF': 'discounted cash flow',
'GAAP': 'Generally Accepted Accounting Principles',
'LTM': 'last twelve months',
'EBIT margin': 'earnings before interest and taxes margin',
'EBT': 'earnings before taxes',
'EBTA': 'earnings before taxes and amortization',
'FTE': 'full-time equivalent',
'EBIDTA': 'earnings before interest, depreciation, taxes, and amortization',
'EBTIDA': 'earnings before taxes, interest, depreciation, and amortization',
'EBITDAR': 'earnings before interest, taxes, depreciation, amortization, and rent',
'COGS': 'cost of goods sold',
'APR': 'annual percentage rate',
'PESTEL': 'Political, Economic, Social, Technological, Environmental, and Legal',
'KPI': 'key performance indicator',
'SWOT': 'Strengths, Weaknesses, Opportunities, Threats',
'CAPEX': 'capital expenditures',
'EBITDARM': 'earnings before interest, taxes, depreciation, amortization, rent, and management fees',
'EBITDAX': 'earnings before interest, taxes, depreciation, amortization, and exploration expenses',
'EBITDAS': 'earnings before interest, taxes, depreciation, amortization, and restructuring costs',
'EBITDAX-C': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and commodity derivatives',
'EBITDAX-R': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and asset retirement obligations',
'EBITDAX-E': 'earnings before interest, taxes, depreciation, amortization, exploration expenses, and environmental liabilities'
# Add more abbreviations and replacements as needed
}
for abbreviation, full_form in replacements.items():
text = text.replace(abbreviation, full_form)
return text
def clean_and_preprocess(text):
text=[x for x in text.split("\n") if len(x)>100]
l=[]
for t in text:
# Convert to lowercase
t = t.lower()
# Tokenize text into words
words = nltk.word_tokenize(t)
# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_words = [word for word in words if word not in stop_words]
# Join the words back into a cleaned text
cleaned_text = ' '.join(filtered_words)
l.append(cleaned_text)
return "\n".join(l)
def convert_amount_to_number(amount_str):
try:
return w2n.word_to_num(amount_str)
except ValueError:
return 0 # Return 0 if the conversion fails
st.header("Transcript Analysis", divider='rainbow')
transcript = st.text_area("Enter the transcript:", height=100)
if st.button("Analyze"):
transcript=replace_abbreviations(transcript)
transcript=replace_abbreviations(transcript)
transcript=removeSpeakers(transcript)
transcript=removeQA(transcript)
transcript=clean_and_preprocess(transcript)
tokens=transcript.split()
splitSize=256
chunks=[tokens[r*splitSize:(r+1)*splitSize] for r in range(math.ceil(len(tokens)/splitSize))]
chunks=[" ".join(chuk) for chuk in chunks]
st.subheader("Management Sentiment", divider='rainbow')
sentiment = [sentiment_model(x)[0]['label'] for x in chunks]
sentiment=max(sentiment,key=sentiment.count)
sentiment_color = "green" if sentiment == "postive" else "red"
st.markdown(f'{sentiment}', unsafe_allow_html=True)
st.subheader("Next Quarter Perdiction", divider='rainbow')
increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
increase_decrease=max(increase_decrease,key=increase_decrease.count)
increase_decrease_color = "green" if increase_decrease == "Increase" else "red"
st.markdown(f'{increase_decrease}', unsafe_allow_html=True)
st.subheader("Financial Metrics", divider='rainbow')
ner_result=[]
savedchunks=[]
idx=0
while idx=1:
idxx=0
savedchunks.append(idx)
while idxxexpencesAmount:
st.markdown(f'{"This is a great chance for investment. Do consider it."}', unsafe_allow_html=True)
else:
st.markdown(f'{"Not the best chance for investment."}', unsafe_allow_html=True)