Spaces:
Build error
Build error
Commit
·
e3f78a5
1
Parent(s):
2d6f95f
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,10 @@ from nltk.corpus import stopwords
|
|
8 |
import spacy
|
9 |
from spacy import displacy
|
10 |
from word2number import w2n
|
11 |
-
|
12 |
nltk.download('punkt')
|
13 |
nltk.download('stopwords')
|
14 |
-
|
15 |
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
|
16 |
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
|
17 |
tokenizer = AutoTokenizer.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
@@ -233,20 +233,20 @@ if st.button("Analyze"):
|
|
233 |
st.text_input(f'Profit:{idx+1}', profits[idx])
|
234 |
for idx in range(len(expences)):
|
235 |
st.text_input(f'Expences:{idx+1}', expences[idx])
|
236 |
-
st.subheader("Parts from transcript that contais financial metrics", divider='rainbow')
|
237 |
-
for idx in savedchunks:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
st.subheader("Investment Recommendation", divider='rainbow')
|
251 |
profitAmount=sum([convert_amount_to_number(x) for x in profits])
|
252 |
expencesAmount=sum([convert_amount_to_number(x) for x in expences])
|
|
|
8 |
import spacy
|
9 |
from spacy import displacy
|
10 |
from word2number import w2n
|
11 |
+
|
12 |
nltk.download('punkt')
|
13 |
nltk.download('stopwords')
|
14 |
+
|
15 |
sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFeedback-V1.0.7")
|
16 |
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
|
17 |
tokenizer = AutoTokenizer.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
|
|
233 |
st.text_input(f'Profit:{idx+1}', profits[idx])
|
234 |
for idx in range(len(expences)):
|
235 |
st.text_input(f'Expences:{idx+1}', expences[idx])
|
236 |
+
# st.subheader("Parts from transcript that contais financial metrics", divider='rainbow')
|
237 |
+
# for idx in savedchunks:
|
238 |
+
# doc = nlp(chunks[idx])
|
239 |
+
# entity_list=nlpPipe(chunks[idx])
|
240 |
+
# entities = []
|
241 |
+
# for entity in entity_list:
|
242 |
+
# span = doc.char_span(entity['start'], entity['end'], label=entity['entity_group'])
|
243 |
+
# entities.append(span)
|
244 |
+
# try:
|
245 |
+
# doc.ents = entities
|
246 |
+
# ent_html = displacy.render(doc, style="ent", jupyter=False)
|
247 |
+
# st.markdown(ent_html, unsafe_allow_html=True)
|
248 |
+
# except:
|
249 |
+
# pass
|
250 |
st.subheader("Investment Recommendation", divider='rainbow')
|
251 |
profitAmount=sum([convert_amount_to_number(x) for x in profits])
|
252 |
expencesAmount=sum([convert_amount_to_number(x) for x in expences])
|