Spaces:
Build error
Build error
Commit
·
d91e017
1
Parent(s):
3cfce0f
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
from transformers import AutoTokenizer,AutoModelForTokenClassification
|
4 |
import math
|
5 |
import nltk
|
6 |
import torch
|
@@ -18,10 +18,10 @@ sentiment_model = pipeline("text-classification", model="AhmedTaha012/managersFe
|
|
18 |
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
|
19 |
tokenizerTopic = AutoTokenizer.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification",use_fast=True)
|
20 |
modelTopic = AutoModelForSequenceClassification.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification")
|
21 |
-
torch.compile(modelTopic)
|
22 |
tokenizer = AutoTokenizer.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
23 |
model = AutoModelForTokenClassification.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
24 |
-
torch.compile(model)
|
25 |
# torch.compile(model)
|
26 |
nlpPipe = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
27 |
def getSpeakers(data):
|
@@ -243,7 +243,8 @@ if st.button("Analyze"):
|
|
243 |
sentiment_color = "green" if sentiment == "postive" else "red"
|
244 |
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
|
245 |
st.subheader("Next Quarter Perdiction", divider='rainbow')
|
246 |
-
increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
|
|
|
247 |
increase_decrease=max(increase_decrease,key=increase_decrease.count)
|
248 |
increase_decrease_color = "green" if increase_decrease == "Increase" else "red"
|
249 |
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer,AutoModelForTokenClassification,AutoModelForSequenceClassification
|
4 |
import math
|
5 |
import nltk
|
6 |
import torch
|
|
|
18 |
increase_decrease_model = pipeline("text-classification", model="AhmedTaha012/nextQuarter-status-V1.1.9")
|
19 |
tokenizerTopic = AutoTokenizer.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification",use_fast=True)
|
20 |
modelTopic = AutoModelForSequenceClassification.from_pretrained("nickmuchi/finbert-tone-finetuned-finance-topic-classification")
|
21 |
+
# torch.compile(modelTopic)
|
22 |
tokenizer = AutoTokenizer.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
23 |
model = AutoModelForTokenClassification.from_pretrained("AhmedTaha012/finance-ner-v0.0.9-finetuned-ner")
|
24 |
+
# torch.compile(model)
|
25 |
# torch.compile(model)
|
26 |
nlpPipe = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
27 |
def getSpeakers(data):
|
|
|
243 |
sentiment_color = "green" if sentiment == "postive" else "red"
|
244 |
st.markdown(f'<span style="color:{sentiment_color}">{sentiment}</span>', unsafe_allow_html=True)
|
245 |
st.subheader("Next Quarter Perdiction", divider='rainbow')
|
246 |
+
# increase_decrease = [increase_decrease_model(x)[0]['label'] for x in chunks]
|
247 |
+
|
248 |
increase_decrease=max(increase_decrease,key=increase_decrease.count)
|
249 |
increase_decrease_color = "green" if increase_decrease == "Increase" else "red"
|
250 |
st.markdown(f'<span style="color:{increase_decrease_color}">{increase_decrease}</span>', unsafe_allow_html=True)
|