File size: 2,096 Bytes
8f412ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7312375
c2b6faf
8f412ba
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
import cv2
from extract_frames import ExtractFrames
from get_every_fram_path import getEveryFramPath
from main_emotion_classifier import process, process_single_image
from grapher import createGraph

def process_image(image):
    # Process the image using your existing function
    processed_image = process_single_image(image)
    return processed_image

def process_video(video_path):
    # Extract frames from the video and process them
    output_dir = ExtractFrames(video_path)
    frame_paths = getEveryFramPath(output_dir)
    results, most_frequent_emotion = process(frame_paths)

    # Create the emotion graphs from the results
    createGraph('data/output/results.txt')

    # Return paths to the three generated graphs
    return [
        'data/output/emotion_bar_plot.png',
        'data/output/emotion_stem_plot.png',
        'data/output/emotionAVG.png'
    ]


def gradio_interface(file):
    if file is None:
        return None, None

    file_type = file.name.split('.')[-1].lower()

    if file_type in ['jpg', 'jpeg', 'png', 'bmp']:  # Image input
        image = cv2.imread(file.name)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        processed_image = process_image(image)
        return processed_image, None
    elif file_type in ['mp4', 'avi', 'mov', 'wmv']:  # Video input
        graph_paths = process_video(file.name)
        return None, graph_paths
    else:
        return None, None

# Set up the Gradio Interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.File(label="Upload Image or Video"),
    outputs=[
        gr.Image(type="numpy", label="Processed Image (for image uploads)"),
        gr.Gallery(label="Emotion Distribution Graphs (for video uploads)", columns=3)
    ],
    title="Face Emotion Recognition",
    description="Upload an image or video to analyze emotions. For images, the result will show detected faces with emotions. For videos, it will provide graphs of emotion distribution.",
    examples=["test.png"]
)

# Launch the Gradio interface
if __name__ == "__main__":
    iface.launch()