import gradio as gr from PIL import Image import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision.models as models import numpy as np # Set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load the main classifier (Main_Classifier_best_model.pth) main_model = models.resnet18(pretrained=False) num_ftrs = main_model.fc.in_features main_model.fc = nn.Linear(num_ftrs, 3) # 3 classes: Soda drinks, Clothing, Mobile Phones main_model.load_state_dict(torch.load('Main_Classifier_best_model.pth', map_location=device)) main_model = main_model.to(device) main_model.eval() # Define class names for the main classifier based on folder structure main_class_names = ['Clothing', 'Mobile Phones', 'Soda drinks'] # Sub-classifier models def load_soda_drinks_model(): model = models.resnet18(pretrained=False) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 3) # 3 classes: Miranda, Pepsi, Seven Up model.load_state_dict(torch.load('Soda_drinks_best_model.pth', map_location=device)) model = model.to(device) model.eval() return model def load_clothing_model(): model = models.resnet18(pretrained=False) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2) # 2 classes: Pants, T-Shirt model.load_state_dict(torch.load('Clothes_best_model.pth', map_location=device)) model = model.to(device) model.eval() return model def load_mobile_phones_model(): model = models.resnet18(pretrained=False) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 2) # 2 classes: Apple, Samsung model.load_state_dict(torch.load('Phone_best_model.pth', map_location=device)) model = model.to(device) model.eval() return model def convert_to_rgb(image): """ Converts 'P' mode images with transparency to 'RGBA', and then to 'RGB'. This is to avoid transparency issues during model training. """ if image.mode in ('P', 'RGBA'): return image.convert('RGB') return image # Define preprocessing transformations (same used during training) preprocess = transforms.Compose([ transforms.Lambda(convert_to_rgb), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet normalization ]) def classify_image(image): # Open the image using PIL image = Image.fromarray(image) # Preprocess the image input_image = preprocess(image).unsqueeze(0).to(device) # Perform inference with the main classifier with torch.no_grad(): output = main_model(input_image) probabilities = torch.nn.functional.softmax(output[0], dim=0) confidence, predicted_class = torch.max(probabilities, 0) # Main classifier result main_prediction = main_class_names[predicted_class] main_confidence = confidence.item() # Load and apply the sub-classifier based on the main classification if main_prediction == 'Soda drinks': soda_model = load_soda_drinks_model() sub_class_names = ['Miranda', 'Pepsi', 'Seven Up'] with torch.no_grad(): sub_output = soda_model(input_image) elif main_prediction == 'Clothing': clothing_model = load_clothing_model() sub_class_names = ['Pants', 'T-Shirt'] with torch.no_grad(): sub_output = clothing_model(input_image) elif main_prediction == 'Mobile Phones': phones_model = load_mobile_phones_model() sub_class_names = ['Apple', 'Samsung'] with torch.no_grad(): sub_output = phones_model(input_image) # Perform inference with the sub-classifier sub_probabilities = torch.nn.functional.softmax(sub_output[0], dim=0) sub_confidence, sub_predicted_class = torch.max(sub_probabilities, 0) sub_prediction = sub_class_names[sub_predicted_class] sub_confidence = sub_confidence.item() return f"Main Predicted Class: {main_prediction} (Confidence: {main_confidence:.4f})", \ f"Sub Predicted Class: {sub_prediction} (Confidence: {sub_confidence:.4f})" # Gradio interface image_input = gr.inputs.Image(shape=(224, 224), image_mode="RGB") output_text = gr.outputs.Textbox() gr.Interface(fn=classify_image, inputs=image_input, outputs=output_text, title="Main and Sub-Classifier System", description="Upload an image to classify whether it belongs to Clothing, Mobile Phones, or Soda Drinks. Based on the prediction, it will further classify within the subcategory.", theme="default").launch()