gui_test_app / app.py
junda-zhang's picture
init
07368ee
import base64
import json
import ast
import os
import re
import io
import math
import gradio as gr
import oss2
from oss2.credentials import EnvironmentVariableCredentialsProvider
from openai import OpenAI
from datetime import datetime
from PIL import ImageDraw
# Define constants
DESCRIPTION = "[UI-TARS](https://github.com/bytedance/UI-TARS)"
client = OpenAI(
base_url=os.environ.get("ENDPOINT_URL"),
api_key=os.environ.get("API_KEY")
)
prompt = "Output only the coordinate of one box in your response. "
auth = oss2.ProviderAuthV4(EnvironmentVariableCredentialsProvider())
endpoint = 'oss-us-east-1.aliyuncs.com'
region = "us-east-1"
bucket = os.environ.get("BUCKET")
bucket = oss2.Bucket(auth, endpoint, bucket, region=region)
def draw_point_area(image, point):
radius = min(image.width, image.height) // 15
x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height)
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), outline='red', width=2)
ImageDraw.Draw(image).ellipse((x - 2, y - 2, x + 2, y + 2), fill='red')
return image
def resize_image(image):
max_pixels = 6000 * 28 * 28
if image.width * image.height > max_pixels:
max_pixels = 2700 * 28 * 28
else:
max_pixels = 1340 * 28 * 28
resize_factor = math.sqrt(max_pixels / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
image = image.resize((width, height))
return image
def upload_images(session_id, image, result_image, query):
img_path = f"{session_id}.png"
result_img_path = f"{session_id}-draw.png"
metadata = dict(
query=query,
resize_image=img_path,
result_image=result_img_path,
session_id=session_id
)
img_bytes = io.BytesIO()
image.save(img_bytes, format="png")
img_bytes = img_bytes.getvalue()
bucket.put_object(img_path, img_bytes)
rst_img_bytes = io.BytesIO()
result_image.save(rst_img_bytes, format="png")
rst_img_bytes = rst_img_bytes.getvalue()
bucket.put_object(result_img_path, rst_img_bytes)
bucket.put_object(f"{session_id}.json", json.dumps(metadata))
print("end upload images")
def run_ui(image, query, session_id, is_example_image):
click_xy = None
images_during_iterations = [] # List to store images at each step
width, height = image.width, image.height
image = resize_image(image)
bytes = io.BytesIO()
image.save(bytes, format="png")
base64_image = base64.standard_b64encode(bytes.getvalue()).decode("utf-8")
messages = [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}},
{"type": "text", "text": prompt + query},
],
}
]
response = client.chat.completions.create(model="tgi", messages=messages, temperature=1.0, top_p=0.7, max_tokens=128, frequency_penalty=1, stream=False)
output_text = response.choices[0].message.content
pattern = r"\((\d+,\d+)\)"
match = re.search(pattern, output_text)
if match:
coordinates = match.group(1)
click_xy = ast.literal_eval(coordinates)
result_image = draw_point_area(image, click_xy)
images_during_iterations.append(result_image)
click_xy = round(click_xy[0]/1000 * width), round(click_xy[1]/1000 * height)
# TODO: async
if is_example_image == "False":
upload_images(session_id, image, result_image, query)
return images_during_iterations, str(click_xy)
def update_vote(vote_type, image, click_image, prompt, is_example):
"""upload bad cases to somewhere"""
if vote_type == "upvote":
return "Everything good"
if is_example == "True":
return "Do nothing for example"
click_img_path = click_image[0] # webp format
image.size
# TODO: upload to some where
return f"Thank you for your feedback!"
examples = [
["./examples/solitaire.png", "Play the solitaire collection", True],
["./examples/weather_ui.png", "Open map", True],
["./examples/football_live.png", "click team 1 win", True],
["./examples/windows_panel.png", "switch to documents", True],
["./examples/paint_3d.png", "rotate left", True],
["./examples/finder.png", "view files from airdrop", True],
["./examples/amazon.jpg", "Search bar at the top of the page", True],
["./examples/semantic.jpg", "Home", True],
["./examples/accweather.jpg", "Select May", True],
["./examples/arxiv.jpg", "Home", True],
["./examples/health.jpg", "text labeled by 2023/11/26", True],
["./examples/ios_setting.png", "Turn off Do not disturb.", True],
]
title_markdown = ("""
# UI-TARS Pioneering Automated GUI Interaction with Native Agents
[[🤗Model](https://huggingface.co./bytedance-research/UI-TARS-7B-SFT)] [[⌨️Code](https://github.com/bytedance/UI-TARS)] [[📑Paper](https://github.com/bytedance/UI-TARS/blob/main/UI_TARS_paper.pdf)] [🏄[Midscene (Browser Automation)](https://github.com/web-infra-dev/Midscene)] [🫨[Discord](https://discord.gg/txAE43ps)]
""")
tos_markdown = ("""
### Terms of use
This demo is governed by the original license of UI-TARS. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc. (注:本演示受UI-TARS的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)
""")
learn_more_markdown = ("""
### License
Apache License 2.0
""")
code_adapt_markdown = ("""
### Acknowledgments
The app code is modified from [ShowUI](https://huggingface.co./spaces/showlab/ShowUI)
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
#chatbot img {
max-width: 80%;
max-height: 80vh;
width: auto;
height: auto;
object-fit: contain;
}
"""
def build_demo():
with gr.Blocks(title="UI-TARS Demo", theme=gr.themes.Default(), css=block_css) as demo:
state_session_id = gr.State(value=None)
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="pil", label="Input Screenshot")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter an instruction and press Submit",
label="Instruction",
)
submit_btn = gr.Button(value="Submit", variant="primary")
with gr.Column(scale=6):
output_gallery = gr.Gallery(label="Output with click", object_fit="contain", preview=True)
# output_gallery = gr.Gallery(label="Iterative Refinement")
gr.HTML(
"""
<p><strong>Notice:</strong> The <span style="color: red;">red point</span> with a circle on the output image represents the predicted coordinates for a click.</p>
"""
)
with gr.Row():
output_coords = gr.Textbox(label="Final Coordinates")
image_size = gr.Textbox(label="Image Size")
gr.HTML(
"""
<p><strong>Expected result or not? help us improve! ⬇️</strong></p>
"""
)
with gr.Row(elem_id="action-buttons", equal_height=True):
upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary")
downvote_btn = gr.Button(value="👎 Wrong coordinates!", variant="secondary")
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
with gr.Column(scale=3):
gr.Examples(
examples=[[e[0], e[1]] for e in examples],
inputs=[imagebox, textbox],
outputs=[textbox], # Only update the query textbox
examples_per_page=3,
)
is_example_dropdown = gr.Dropdown(
choices=["True", "False"],
value="False",
visible=False,
label="Is Example Image",
)
def set_is_example(query):
for _, example_query, is_example in examples:
if query.strip() == example_query.strip():
return str(is_example) # Return as string for Dropdown compatibility
return "False"
textbox.change(
set_is_example,
inputs=[textbox],
outputs=[is_example_dropdown],
)
def on_submit(image, query, is_example_image):
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
images_during_iterations, click_coords = run_ui(image, query, session_id, is_example_image)
return images_during_iterations, click_coords, session_id, f"{image.width}x{image.height}"
submit_btn.click(
on_submit,
[imagebox, textbox, is_example_dropdown],
[output_gallery, output_coords, state_session_id, image_size],
)
clear_btn.click(
lambda: (None, None, None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id, image_size],
queue=False
)
upvote_btn.click(
lambda image, click_image, prompt, is_example: update_vote("upvote", image, click_image, prompt, is_example),
inputs=[imagebox, output_gallery, textbox, is_example_dropdown],
outputs=[],
queue=False
)
downvote_btn.click(
lambda image, click_image, prompt, is_example: update_vote("downvote", image, click_image, prompt, is_example),
inputs=[imagebox, output_gallery, textbox, is_example_dropdown],
outputs=[],
queue=False
)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
gr.Markdown(code_adapt_markdown)
return demo
if __name__ == "__main__":
demo = build_demo()
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
)