import gradio as gr import cv2 import numpy as np from groq import Groq import time from PIL import Image as PILImage import io import os import base64 class SafetyMonitor: def __init__(self): """Initialize Safety Monitor with configuration.""" self.client = Groq() self.model_name = "llama-3.2-90b-vision-preview" self.max_image_size = (800, 800) self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)] def preprocess_image(self, frame): """Process image for analysis.""" if len(frame.shape) == 2: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) elif len(frame.shape) == 3 and frame.shape[2] == 4: frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) return self.resize_image(frame) def resize_image(self, image): """Resize image while maintaining aspect ratio.""" height, width = image.shape[:2] if height > self.max_image_size[1] or width > self.max_image_size[0]: aspect = width / height if width > height: new_width = self.max_image_size[0] new_height = int(new_width / aspect) else: new_height = self.max_image_size[1] new_width = int(new_height * aspect) return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) return image def encode_image(self, frame): """Convert image to base64 encoding.""" frame_pil = PILImage.fromarray(frame) buffered = io.BytesIO() frame_pil.save(buffered, format="JPEG", quality=95) img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') return f"data:image/jpeg;base64,{img_base64}" def analyze_frame(self, frame): """Perform safety analysis on the frame.""" if frame is None: return "No frame received", {} frame = self.preprocess_image(frame) image_url = self.encode_image(frame) try: completion = self.client.chat.completions.create( model=self.model_name, messages=[ { "role": "user", "content": [ { "type": "text", "text": "Identify and list safety concerns in this workplace image. For each issue found, include its location and specific safety concern. Look for hazards related to PPE, ergonomics, equipment, environment, and work procedures." }, { "type": "image_url", "image_url": { "url": image_url } } ] } ], temperature=0.7, max_tokens=500, stream=False ) return completion.choices[0].message.content, {} except Exception as e: print(f"Analysis error: {str(e)}") return f"Analysis Error: {str(e)}", {} def get_region_coordinates(self, position, image_shape): """Convert textual position to coordinates.""" height, width = image_shape[:2] # Define regions regions = { 'center': (width//3, height//3, 2*width//3, 2*height//3), 'top': (width//3, 0, 2*width//3, height//3), 'bottom': (width//3, 2*height//3, 2*width//3, height), 'left': (0, height//3, width//3, 2*height//3), 'right': (2*width//3, height//3, width, 2*height//3), 'top-left': (0, 0, width//3, height//3), 'top-right': (2*width//3, 0, width, height//3), 'bottom-left': (0, 2*height//3, width//3, height), 'bottom-right': (2*width//3, 2*height//3, width, height), 'upper': (0, 0, width, height//2), 'lower': (0, height//2, width, height), 'middle': (0, height//3, width, 2*height//3) } # Ensure the region name from the model output matches one of our predefined regions position = position.lower() return regions.get(position, (0, 0, width, height)) # Default to full image if no match def draw_observations(self, image, observations): """Draw bounding boxes and labels for safety observations.""" height, width = image.shape[:2] font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 thickness = 2 padding = 10 for idx, obs in enumerate(observations): color = self.colors[idx % len(self.colors)] # Get coordinates for this observation x1, y1, x2, y2 = self.get_region_coordinates(obs['location'], image.shape) print(f"Drawing box at coordinates: ({x1}, {y1}, {x2}, {y2}) for {obs['description']}") # Draw rectangle cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) # Add label with background label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description'] label_size, _ = cv2.getTextSize(label, font, font_scale, thickness) # Position text above the box text_x = max(0, x1) text_y = max(label_size[1] + padding, y1 - padding) # Draw text background cv2.rectangle(image, (text_x, text_y - label_size[1] - padding), (text_x + label_size[0] + padding, text_y), color, -1) # Draw text cv2.putText(image, label, (text_x + padding//2, text_y - padding//2), font, font_scale, (255, 255, 255), thickness) return image def process_frame(self, frame): """Main processing pipeline for safety analysis.""" if frame is None: return None, "No image provided" try: # Get analysis analysis, _ = self.analyze_frame(frame) print(f"Raw analysis: {analysis}") # Debug print display_frame = frame.copy() # Parse observations observations = [] for line in analysis.split('\n'): line = line.strip() if line.startswith('-') and '' in line and '' in line: start = line.find('') + len('') end = line.find('') location_description = line[start:end].strip() if ':' in location_description: location, description = location_description.split(':', 1) observations.append({ 'location': location.strip(), 'description': description.strip() }) print(f"Parsed observations: {observations}") # Debug print # Draw observations if observations: annotated_frame = self.draw_observations(display_frame, observations) return annotated_frame, analysis return display_frame, analysis except Exception as e: print(f"Processing error: {str(e)}") return None, f"Error processing image: {str(e)}" def create_monitor_interface(): monitor = SafetyMonitor() with gr.Blocks() as demo: gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision") with gr.Row(): input_image = gr.Image(label="Upload Image") output_image = gr.Image(label="Safety Analysis") analysis_text = gr.Textbox(label="Detailed Analysis", lines=5) def analyze_image(image): if image is None: return None, "No image provided" try: processed_frame, analysis = monitor.process_frame(image) return processed_frame, analysis except Exception as e: print(f"Processing error: {str(e)}") return None, f"Error processing image: {str(e)}" input_image.change( fn=analyze_image, inputs=input_image, outputs=[output_image, analysis_text] ) gr.Markdown(""" ## Instructions: 1. Upload any workplace/safety-related image 2. View identified hazards and their locations 3. Read detailed analysis of safety concerns """) return demo if __name__ == "__main__": demo = create_monitor_interface() demo.launch()