File size: 9,077 Bytes
7b04d4e
 
 
 
 
49a323c
7b04d4e
33fd6ad
75c2b7c
33fd6ad
771e08a
 
519704e
771e08a
 
 
 
 
 
519704e
771e08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cd948
519704e
 
 
 
92928c5
519704e
 
 
 
 
 
 
 
 
 
 
 
92928c5
519704e
 
 
 
 
5f3406b
519704e
 
 
 
92928c5
519704e
 
 
 
 
 
 
46e12d1
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b34ed
 
 
519704e
 
 
 
 
 
 
 
92928c5
519704e
 
bda20be
519704e
 
c3b34ed
46e12d1
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf83e0
519704e
 
 
 
 
 
9bf83e0
519704e
 
 
 
 
 
 
 
92928c5
519704e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92928c5
 
519704e
 
 
 
 
 
 
 
 
 
46e12d1
771e08a
1cddd79
 
 
7e6153d
7b04d4e
1cddd79
b4f3ea6
46e12d1
1cddd79
18cd948
7b04d4e
b4f3ea6
b6ce847
49a323c
27eab0f
 
 
 
9fd1d46
27eab0f
33fd6ad
b4f3ea6
 
 
 
1cddd79
7b04d4e
bda20be
 
46e12d1
771e08a
 
bda20be
 
1cddd79
 
771e08a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64

class SafetyMonitor:
    def __init__(self):
        """Initialize Safety Monitor with configuration."""
        self.client = Groq()
        self.model_name = "llama-3.2-90b-vision-preview"
        self.max_image_size = (800, 800)
        self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]

    def preprocess_image(self, frame):
        """Process image for analysis."""
        if len(frame.shape) == 2:
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        elif len(frame.shape) == 3 and frame.shape[2] == 4:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
        
        return self.resize_image(frame)

    def resize_image(self, image):
        """Resize image while maintaining aspect ratio."""
        height, width = image.shape[:2]
        if height > self.max_image_size[1] or width > self.max_image_size[0]:
            aspect = width / height
            if width > height:
                new_width = self.max_image_size[0]
                new_height = int(new_width / aspect)
            else:
                new_height = self.max_image_size[1]
                new_width = int(new_height * aspect)
            return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
        return image

    def encode_image(self, frame):
        """Convert image to base64 encoding."""
        frame_pil = PILImage.fromarray(frame)
        buffered = io.BytesIO()
        frame_pil.save(buffered, format="JPEG", quality=95)
        img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
        return f"data:image/jpeg;base64,{img_base64}"

    def analyze_frame(self, frame):
        """Perform safety analysis on the frame."""
        if frame is None:
            return "No frame received", {}
    
        frame = self.preprocess_image(frame)
        image_url = self.encode_image(frame)
        
        try:
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": "Identify and list safety concerns in this workplace image. For each issue found, include its location and specific safety concern. Look for hazards related to PPE, ergonomics, equipment, environment, and work procedures."
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_url
                                }
                            }
                        ]
                    }
                ],
                temperature=0.7,
                max_tokens=500,
                stream=False
            )
            return completion.choices[0].message.content, {}
        except Exception as e:
            print(f"Analysis error: {str(e)}")
            return f"Analysis Error: {str(e)}", {}

    def get_region_coordinates(self, position, image_shape):
        """Convert textual position to coordinates."""
        height, width = image_shape[:2]
        
        # Define regions
        regions = {
            'center': (width//3, height//3, 2*width//3, 2*height//3),
            'top': (width//3, 0, 2*width//3, height//3),
            'bottom': (width//3, 2*height//3, 2*width//3, height),
            'left': (0, height//3, width//3, 2*height//3),
            'right': (2*width//3, height//3, width, 2*height//3),
            'top-left': (0, 0, width//3, height//3),
            'top-right': (2*width//3, 0, width, height//3),
            'bottom-left': (0, 2*height//3, width//3, height),
            'bottom-right': (2*width//3, 2*height//3, width, height),
            'upper': (0, 0, width, height//2),
            'lower': (0, height//2, width, height),
            'middle': (0, height//3, width, 2*height//3)
        }
        
        # Ensure the region name from the model output matches one of our predefined regions
        position = position.lower()
        return regions.get(position, (0, 0, width, height))  # Default to full image if no match

    def draw_observations(self, image, observations):
        """Draw bounding boxes and labels for safety observations."""
        height, width = image.shape[:2]
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 0.5
        thickness = 2
        padding = 10
    
        for idx, obs in enumerate(observations):
            color = self.colors[idx % len(self.colors)]
            
            # Get coordinates for this observation
            x1, y1, x2, y2 = self.get_region_coordinates(obs['location'], image.shape)
            print(f"Drawing box at coordinates: ({x1}, {y1}, {x2}, {y2}) for {obs['description']}")
            
            # Draw rectangle
            cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
            
            # Add label with background
            label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
            label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
            
            # Position text above the box
            text_x = max(0, x1)
            text_y = max(label_size[1] + padding, y1 - padding)
            
            # Draw text background
            cv2.rectangle(image, 
                         (text_x, text_y - label_size[1] - padding),
                         (text_x + label_size[0] + padding, text_y),
                         color, -1)
            
            # Draw text
            cv2.putText(image, label,
                       (text_x + padding//2, text_y - padding//2),
                       font, font_scale, (255, 255, 255), thickness)
        
        return image

    def process_frame(self, frame):
        """Main processing pipeline for safety analysis."""
        if frame is None:
            return None, "No image provided"
        
        try:
            # Get analysis
            analysis, _ = self.analyze_frame(frame)
            print(f"Raw analysis: {analysis}")  # Debug print
            display_frame = frame.copy()
            
            # Parse observations
            observations = []
            for line in analysis.split('\n'):
                line = line.strip()
                if line.startswith('-') and '<location>' in line and '</location>' in line:
                    start = line.find('<location>') + len('<location>')
                    end = line.find('</location>')
                    location_description = line[start:end].strip()
                    
                    if ':' in location_description:
                        location, description = location_description.split(':', 1)
                        observations.append({
                            'location': location.strip(),
                            'description': description.strip()
                        })
            
            print(f"Parsed observations: {observations}")  # Debug print
            
            # Draw observations
            if observations:
                annotated_frame = self.draw_observations(display_frame, observations)
                return annotated_frame, analysis
            
            return display_frame, analysis
            
        except Exception as e:
            print(f"Processing error: {str(e)}")
            return None, f"Error processing image: {str(e)}"

def create_monitor_interface():
    monitor = SafetyMonitor()
    
    with gr.Blocks() as demo:
        gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
        
        with gr.Row():
            input_image = gr.Image(label="Upload Image")
            output_image = gr.Image(label="Safety Analysis")
        
        analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
            
        def analyze_image(image):
            if image is None:
                return None, "No image provided"
            try:
                processed_frame, analysis = monitor.process_frame(image)
                return processed_frame, analysis
            except Exception as e:
                print(f"Processing error: {str(e)}")
                return None, f"Error processing image: {str(e)}"
            
        input_image.change(
            fn=analyze_image,
            inputs=input_image,
            outputs=[output_image, analysis_text]
        )

        gr.Markdown("""
        ## Instructions:
        1. Upload any workplace/safety-related image
        2. View identified hazards and their locations
        3. Read detailed analysis of safety concerns
        """)

    return demo

if __name__ == "__main__":
    demo = create_monitor_interface()
    demo.launch()