File size: 9,077 Bytes
7b04d4e 49a323c 7b04d4e 33fd6ad 75c2b7c 33fd6ad 771e08a 519704e 771e08a 519704e 771e08a 18cd948 519704e 92928c5 519704e 92928c5 519704e 5f3406b 519704e 92928c5 519704e 46e12d1 519704e c3b34ed 519704e 92928c5 519704e bda20be 519704e c3b34ed 46e12d1 519704e 9bf83e0 519704e 9bf83e0 519704e 92928c5 519704e 92928c5 519704e 46e12d1 771e08a 1cddd79 7e6153d 7b04d4e 1cddd79 b4f3ea6 46e12d1 1cddd79 18cd948 7b04d4e b4f3ea6 b6ce847 49a323c 27eab0f 9fd1d46 27eab0f 33fd6ad b4f3ea6 1cddd79 7b04d4e bda20be 46e12d1 771e08a bda20be 1cddd79 771e08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
class SafetyMonitor:
def __init__(self):
"""Initialize Safety Monitor with configuration."""
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
def preprocess_image(self, frame):
"""Process image for analysis."""
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
return self.resize_image(frame)
def resize_image(self, image):
"""Resize image while maintaining aspect ratio."""
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def encode_image(self, frame):
"""Convert image to base64 encoding."""
frame_pil = PILImage.fromarray(frame)
buffered = io.BytesIO()
frame_pil.save(buffered, format="JPEG", quality=95)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/jpeg;base64,{img_base64}"
def analyze_frame(self, frame):
"""Perform safety analysis on the frame."""
if frame is None:
return "No frame received", {}
frame = self.preprocess_image(frame)
image_url = self.encode_image(frame)
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Identify and list safety concerns in this workplace image. For each issue found, include its location and specific safety concern. Look for hazards related to PPE, ergonomics, equipment, environment, and work procedures."
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
}
],
temperature=0.7,
max_tokens=500,
stream=False
)
return completion.choices[0].message.content, {}
except Exception as e:
print(f"Analysis error: {str(e)}")
return f"Analysis Error: {str(e)}", {}
def get_region_coordinates(self, position, image_shape):
"""Convert textual position to coordinates."""
height, width = image_shape[:2]
# Define regions
regions = {
'center': (width//3, height//3, 2*width//3, 2*height//3),
'top': (width//3, 0, 2*width//3, height//3),
'bottom': (width//3, 2*height//3, 2*width//3, height),
'left': (0, height//3, width//3, 2*height//3),
'right': (2*width//3, height//3, width, 2*height//3),
'top-left': (0, 0, width//3, height//3),
'top-right': (2*width//3, 0, width, height//3),
'bottom-left': (0, 2*height//3, width//3, height),
'bottom-right': (2*width//3, 2*height//3, width, height),
'upper': (0, 0, width, height//2),
'lower': (0, height//2, width, height),
'middle': (0, height//3, width, 2*height//3)
}
# Ensure the region name from the model output matches one of our predefined regions
position = position.lower()
return regions.get(position, (0, 0, width, height)) # Default to full image if no match
def draw_observations(self, image, observations):
"""Draw bounding boxes and labels for safety observations."""
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
padding = 10
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
# Get coordinates for this observation
x1, y1, x2, y2 = self.get_region_coordinates(obs['location'], image.shape)
print(f"Drawing box at coordinates: ({x1}, {y1}, {x2}, {y2}) for {obs['description']}")
# Draw rectangle
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
# Add label with background
label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
# Position text above the box
text_x = max(0, x1)
text_y = max(label_size[1] + padding, y1 - padding)
# Draw text background
cv2.rectangle(image,
(text_x, text_y - label_size[1] - padding),
(text_x + label_size[0] + padding, text_y),
color, -1)
# Draw text
cv2.putText(image, label,
(text_x + padding//2, text_y - padding//2),
font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame):
"""Main processing pipeline for safety analysis."""
if frame is None:
return None, "No image provided"
try:
# Get analysis
analysis, _ = self.analyze_frame(frame)
print(f"Raw analysis: {analysis}") # Debug print
display_frame = frame.copy()
# Parse observations
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-') and '<location>' in line and '</location>' in line:
start = line.find('<location>') + len('<location>')
end = line.find('</location>')
location_description = line[start:end].strip()
if ':' in location_description:
location, description = location_description.split(':', 1)
observations.append({
'location': location.strip(),
'description': description.strip()
})
print(f"Parsed observations: {observations}") # Debug print
# Draw observations
if observations:
annotated_frame = self.draw_observations(display_frame, observations)
return annotated_frame, analysis
return display_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
def create_monitor_interface():
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Safety Analysis")
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions:
1. Upload any workplace/safety-related image
2. View identified hazards and their locations
3. Read detailed analysis of safety concerns
""")
return demo
if __name__ == "__main__":
demo = create_monitor_interface()
demo.launch()
|