import gradio as gr from functools import partial from rag_benchmark import get_benchmark title = "Prototype Temporal Augmented Retrieval (TAR)" desc = "Database: 22.4k tweets related to finance dated from July 12,2018 to July 19,2018 - know more about the approach: [blog post](https://medium.com/@adam-rida/temporal-augmented-retrieval-tar-dynamic-rag-ad737506dfcc)\ncontact: adrida.github.io" with gr.Blocks(title=title,theme='nota-ai/theme') as demo: gr.Markdown(f"# {title}\n{desc}") with gr.Row(): with gr.Column(scale = 10): text_area = gr.Textbox(placeholder="Write here", lines=1, label="Ask anything") with gr.Column(scale = 2): api_key = gr.Textbox(placeholder="Paste your OpenAI API key here", lines=1) search_button = gr.Button(value="Ask") with gr.Row(): with gr.Tab("Dynamic Temporal Augmented Retrieval (ours)"): gr.Markdown("## Dynamic Temporal Augmented Retrieval (ours)\n---") tempo = gr.Markdown() with gr.Tab("Naive Semantic Search"): gr.Markdown("## Simple Semantic Search\n---") naive = gr.Markdown() with gr.Tab("Traditional RAG (Langchain type)"): gr.Markdown("## Augmented Indexed Retrieval\n---") classic = gr.Markdown() search_function = partial(get_benchmark) search_button.click(fn=search_function, inputs=[text_area, api_key], outputs=[tempo, classic, naive], ) #demo.queue(concurrency_count=100,status_update_rate=500).launch(max_threads=100, show_error=True, debug = True, inline =False) demo.launch(max_threads=40)