Spaces:
Sleeping
Sleeping
Adeptschneider
commited on
Upload 4 files
Browse filesUploaded AgriXpert Streamlit files
- .env +1 -0
- app.py +253 -0
- chatbot.py +405 -0
- requirements.txt +6 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY=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
|
app.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_chat import message
|
3 |
+
from chatbot import DualChatbot
|
4 |
+
import time
|
5 |
+
from gtts import gTTS
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
# Define the language type settings
|
10 |
+
LANGUAGES = ['English', 'German', 'Spanish', 'French', 'Swahili']
|
11 |
+
SESSION_LENGTHS = ['Short', 'Long']
|
12 |
+
PROFICIENCY_LEVELS = ['Beginner', 'Intermediate', 'Advanced']
|
13 |
+
MAX_EXCHANGE_COUNTS = {
|
14 |
+
'Short': {'Conversation': 4, 'Debate': 4},
|
15 |
+
'Long': {'Conversation': 8, 'Debate': 8}
|
16 |
+
}
|
17 |
+
AUDIO_SPEECH = {
|
18 |
+
'English': 'en',
|
19 |
+
'German': 'de',
|
20 |
+
'Spanish': 'es',
|
21 |
+
'French': 'fr',
|
22 |
+
'Swahili': 'sw'
|
23 |
+
}
|
24 |
+
AVATAR_SEED = [123, 42]
|
25 |
+
|
26 |
+
# Define backbone llm
|
27 |
+
engine = 'OpenAI'
|
28 |
+
|
29 |
+
# Set the title of the app
|
30 |
+
st.title('Agrixpert Bot 🤖')
|
31 |
+
|
32 |
+
# Set the description of the app
|
33 |
+
st.markdown("""
|
34 |
+
This app generates a dialogue between a farmer and an agricultural expert to help farmers make better farming decisions.
|
35 |
+
|
36 |
+
Choose your desired settings and press 'Generate' to start 🚀
|
37 |
+
""")
|
38 |
+
|
39 |
+
# Add a selectbox for learning mode
|
40 |
+
learning_mode = st.sidebar.selectbox('Interaction Mode 📖', ('Conversation', 'Debate'))
|
41 |
+
|
42 |
+
if learning_mode == 'Conversation':
|
43 |
+
role1 = st.sidebar.text_input('Role 1 🎭')
|
44 |
+
action1 = st.sidebar.text_input('Action 1 🗣️')
|
45 |
+
role2 = st.sidebar.text_input('Role 2 🎭')
|
46 |
+
action2 = st.sidebar.text_input('Action 2 🗣️')
|
47 |
+
scenario = st.sidebar.text_input('Scenario 🎥')
|
48 |
+
time_delay = 2
|
49 |
+
|
50 |
+
# Configure role dictionary
|
51 |
+
role_dict = {
|
52 |
+
'role1': {'name': role1, 'action': action1},
|
53 |
+
'role2': {'name': role2, 'action': action2}
|
54 |
+
}
|
55 |
+
|
56 |
+
else:
|
57 |
+
scenario = st.sidebar.text_input('Debate Topic 💬')
|
58 |
+
|
59 |
+
# Configure role dictionary
|
60 |
+
role_dict = {
|
61 |
+
'role1': {'name': 'Proponent'},
|
62 |
+
'role2': {'name': 'Opponent'}
|
63 |
+
}
|
64 |
+
time_delay = 5
|
65 |
+
|
66 |
+
language = st.sidebar.selectbox('Target Language 🔤', LANGUAGES)
|
67 |
+
session_length = st.sidebar.selectbox('Session Length ⏰', SESSION_LENGTHS)
|
68 |
+
proficiency_level = st.sidebar.selectbox('Proficiency Level 🏆', PROFICIENCY_LEVELS)
|
69 |
+
|
70 |
+
|
71 |
+
if "bot1_mesg" not in st.session_state:
|
72 |
+
st.session_state["bot1_mesg"] = []
|
73 |
+
|
74 |
+
if "bot2_mesg" not in st.session_state:
|
75 |
+
st.session_state["bot2_mesg"] = []
|
76 |
+
|
77 |
+
if 'batch_flag' not in st.session_state:
|
78 |
+
st.session_state["batch_flag"] = False
|
79 |
+
|
80 |
+
if 'translate_flag' not in st.session_state:
|
81 |
+
st.session_state["translate_flag"] = False
|
82 |
+
|
83 |
+
if 'audio_flag' not in st.session_state:
|
84 |
+
st.session_state["audio_flag"] = False
|
85 |
+
|
86 |
+
if 'message_counter' not in st.session_state:
|
87 |
+
st.session_state["message_counter"] = 0
|
88 |
+
|
89 |
+
|
90 |
+
def show_messages(mesg_1, mesg_2, message_counter,
|
91 |
+
time_delay, batch=False, audio=False,
|
92 |
+
translation=False):
|
93 |
+
"""Display conversation exchanges. This helper function supports
|
94 |
+
displaying original texts, translated texts, and audio speech.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
--------
|
98 |
+
mesg1: messages spoken by the first bot
|
99 |
+
mesg2: messages spoken by the second bot
|
100 |
+
message_counter: create unique ID key for chat messages
|
101 |
+
time_delay: time interval between conversations
|
102 |
+
batch: True/False to indicate if conversations will be shown
|
103 |
+
all together or with a certain time delay.
|
104 |
+
audio: True/False to indicate if the audio speech need to
|
105 |
+
be appended to the texts
|
106 |
+
translation: True/False to indicate if the translated texts need to
|
107 |
+
be displayed
|
108 |
+
|
109 |
+
Output:
|
110 |
+
-------
|
111 |
+
message_counter: updated counter for ID key
|
112 |
+
"""
|
113 |
+
|
114 |
+
for i, mesg in enumerate([mesg_1, mesg_2]):
|
115 |
+
# Show original exchange ()
|
116 |
+
message(f"{mesg['content']}", is_user=i==1, avatar_style="bottts",
|
117 |
+
seed=AVATAR_SEED[i],
|
118 |
+
key=message_counter)
|
119 |
+
message_counter += 1
|
120 |
+
|
121 |
+
# Mimic time interval between conversations
|
122 |
+
# (this time delay only appears when generating
|
123 |
+
# the conversation script for the first time)
|
124 |
+
if not batch:
|
125 |
+
time.sleep(time_delay)
|
126 |
+
|
127 |
+
# Show translated exchange
|
128 |
+
if translation:
|
129 |
+
message(f"{mesg['translation']}", is_user=i==1, avatar_style="bottts",
|
130 |
+
seed=AVATAR_SEED[i],
|
131 |
+
key=message_counter)
|
132 |
+
message_counter += 1
|
133 |
+
|
134 |
+
# Append autio to the exchange
|
135 |
+
if audio:
|
136 |
+
tts = gTTS(text=mesg['content'], lang=AUDIO_SPEECH[language])
|
137 |
+
sound_file = BytesIO()
|
138 |
+
tts.write_to_fp(sound_file)
|
139 |
+
st.audio(sound_file)
|
140 |
+
|
141 |
+
return message_counter
|
142 |
+
|
143 |
+
|
144 |
+
# Define the button layout at the beginning
|
145 |
+
translate_col, original_col, audio_col = st.columns(3)
|
146 |
+
|
147 |
+
# Create the conversation container
|
148 |
+
conversation_container = st.container()
|
149 |
+
|
150 |
+
if 'dual_chatbots' not in st.session_state:
|
151 |
+
|
152 |
+
if st.sidebar.button('Generate'):
|
153 |
+
|
154 |
+
# Add flag to indicate if this is the first time running the script
|
155 |
+
st.session_state["first_time_exec"] = True
|
156 |
+
|
157 |
+
with conversation_container:
|
158 |
+
if learning_mode == 'Conversation':
|
159 |
+
st.write(f"""#### The following conversation happens between
|
160 |
+
{role1} and {role2} {scenario} 🎭""")
|
161 |
+
|
162 |
+
else:
|
163 |
+
st.write(f"""#### Debate 💬: {scenario}""")
|
164 |
+
|
165 |
+
# Instantiate dual-chatbot system
|
166 |
+
dual_chatbots = DualChatbot(engine, role_dict, language, scenario,
|
167 |
+
proficiency_level, learning_mode, session_length)
|
168 |
+
st.session_state['dual_chatbots'] = dual_chatbots
|
169 |
+
|
170 |
+
# Start exchanges
|
171 |
+
for _ in range(MAX_EXCHANGE_COUNTS[session_length][learning_mode]):
|
172 |
+
output1, output2, translate1, translate2 = dual_chatbots.step()
|
173 |
+
|
174 |
+
mesg_1 = {"role": dual_chatbots.chatbots['role1']['name'],
|
175 |
+
"content": output1, "translation": translate1}
|
176 |
+
mesg_2 = {"role": dual_chatbots.chatbots['role2']['name'],
|
177 |
+
"content": output2, "translation": translate2}
|
178 |
+
|
179 |
+
new_count = show_messages(mesg_1, mesg_2,
|
180 |
+
st.session_state["message_counter"],
|
181 |
+
time_delay=time_delay, batch=False,
|
182 |
+
audio=False, translation=False)
|
183 |
+
st.session_state["message_counter"] = new_count
|
184 |
+
|
185 |
+
# Update session state
|
186 |
+
st.session_state.bot1_mesg.append(mesg_1)
|
187 |
+
st.session_state.bot2_mesg.append(mesg_2)
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
if 'dual_chatbots' in st.session_state:
|
192 |
+
|
193 |
+
# Show translation
|
194 |
+
if translate_col.button('Translate to English'):
|
195 |
+
st.session_state['translate_flag'] = True
|
196 |
+
st.session_state['batch_flag'] = True
|
197 |
+
|
198 |
+
# Show original text
|
199 |
+
if original_col.button('Show original'):
|
200 |
+
st.session_state['translate_flag'] = False
|
201 |
+
st.session_state['batch_flag'] = True
|
202 |
+
|
203 |
+
# Append audio
|
204 |
+
if audio_col.button('Play audio'):
|
205 |
+
st.session_state['audio_flag'] = True
|
206 |
+
st.session_state['batch_flag'] = True
|
207 |
+
|
208 |
+
# Retrieve generated conversation & chatbots
|
209 |
+
mesg1_list = st.session_state.bot1_mesg
|
210 |
+
mesg2_list = st.session_state.bot2_mesg
|
211 |
+
dual_chatbots = st.session_state['dual_chatbots']
|
212 |
+
|
213 |
+
# Control message appear
|
214 |
+
if st.session_state["first_time_exec"]:
|
215 |
+
st.session_state['first_time_exec'] = False
|
216 |
+
|
217 |
+
else:
|
218 |
+
# Show complete message
|
219 |
+
with conversation_container:
|
220 |
+
|
221 |
+
if learning_mode == 'Conversation':
|
222 |
+
st.write(f"""#### {role1} and {role2} {scenario} 🎭""")
|
223 |
+
|
224 |
+
else:
|
225 |
+
st.write(f"""#### Debate 💬: {scenario}""")
|
226 |
+
|
227 |
+
for mesg_1, mesg_2 in zip(mesg1_list, mesg2_list):
|
228 |
+
new_count = show_messages(mesg_1, mesg_2,
|
229 |
+
st.session_state["message_counter"],
|
230 |
+
time_delay=time_delay,
|
231 |
+
batch=st.session_state['batch_flag'],
|
232 |
+
audio=st.session_state['audio_flag'],
|
233 |
+
translation=st.session_state['translate_flag'])
|
234 |
+
st.session_state["message_counter"] = new_count
|
235 |
+
|
236 |
+
|
237 |
+
# # Create summary for key learning points
|
238 |
+
# summary_expander = st.expander('Key Learning Points')
|
239 |
+
# scripts = []
|
240 |
+
# for mesg_1, mesg_2 in zip(mesg1_list, mesg2_list):
|
241 |
+
# for i, mesg in enumerate([mesg_1, mesg_2]):
|
242 |
+
# scripts.append(mesg['role'] + ': ' + mesg['content'])
|
243 |
+
|
244 |
+
# # Compile summary
|
245 |
+
# if "summary" not in st.session_state:
|
246 |
+
# summary = dual_chatbots.summary(scripts)
|
247 |
+
# st.session_state["summary"] = summary
|
248 |
+
# else:
|
249 |
+
# summary = st.session_state["summary"]
|
250 |
+
|
251 |
+
# with summary_expander:
|
252 |
+
# st.markdown(f"**Here is the learning summary:**")
|
253 |
+
# st.write(summary)
|
chatbot.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
+
from langchain.prompts import (
|
4 |
+
ChatPromptTemplate,
|
5 |
+
MessagesPlaceholder,
|
6 |
+
SystemMessagePromptTemplate,
|
7 |
+
HumanMessagePromptTemplate
|
8 |
+
)
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains import LLMChain
|
11 |
+
from langchain.chains import ConversationChain
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.memory import ConversationBufferMemory
|
14 |
+
from dotenv import load_dotenv, find_dotenv
|
15 |
+
|
16 |
+
# Load environmental variables
|
17 |
+
_ = load_dotenv(find_dotenv())
|
18 |
+
|
19 |
+
|
20 |
+
class Chatbot:
|
21 |
+
"""Class definition for a single chatbot with memory, created with LangChain."""
|
22 |
+
|
23 |
+
def __init__(self, engine):
|
24 |
+
"""Select backbone large language model, as well as instantiate
|
25 |
+
the memory for creating language chain in LangChain.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
--------------
|
29 |
+
engine: the backbone llm-based chat model.
|
30 |
+
"""
|
31 |
+
|
32 |
+
# Instantiate llm
|
33 |
+
if engine == 'OpenAI':
|
34 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
35 |
+
self.llm = ChatOpenAI(
|
36 |
+
model_name="gpt-3.5-turbo",
|
37 |
+
temperature=0.7
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
raise KeyError("Currently unsupported chat model type!")
|
41 |
+
|
42 |
+
# Instantiate memory
|
43 |
+
self.memory = ConversationBufferMemory(return_messages=True)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def instruct(self, role, oppo_role, language, scenario,
|
48 |
+
session_length, proficiency_level,
|
49 |
+
learning_mode, starter=False):
|
50 |
+
"""Determine the context of chatbot interaction.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
-----------
|
54 |
+
role: the role played by the current bot.
|
55 |
+
oppo_role: the role played by the opponent bot.
|
56 |
+
language: the language the conversation/debate will be conducted. This is
|
57 |
+
the target language the user is trying to learn.
|
58 |
+
scenario: for conversation, scenario represents the place where the conversation
|
59 |
+
is happening; for debate, scenario represents the debating topic.
|
60 |
+
session_length: the number of exchanges between two chatbots. Two levels are possible:
|
61 |
+
"Short" or "Long".
|
62 |
+
proficiency_level: assumed user's proficiency level in target language. This
|
63 |
+
provides the guideline for the chatbots in terms of the
|
64 |
+
language complexity they will use. Three levels are possible:
|
65 |
+
"Beginner", "Intermediate", and "Advanced".
|
66 |
+
learning_mode: two modes are possible for language learning purposes:
|
67 |
+
"Conversation" --> where two bots are chatting in a specified scenario;
|
68 |
+
"Debate" --> where two bots are debating on a specified topic.
|
69 |
+
starter: flag to indicate if the current chatbot should lead the talking.
|
70 |
+
"""
|
71 |
+
|
72 |
+
# Define language settings
|
73 |
+
self.role = role
|
74 |
+
self.oppo_role = oppo_role
|
75 |
+
self.language = language
|
76 |
+
self.scenario = scenario
|
77 |
+
self.session_length = session_length
|
78 |
+
self.proficiency_level = proficiency_level
|
79 |
+
self.learning_mode = learning_mode
|
80 |
+
self.starter = starter
|
81 |
+
|
82 |
+
# Define prompt template
|
83 |
+
prompt = ChatPromptTemplate.from_messages([
|
84 |
+
SystemMessagePromptTemplate.from_template(self._specify_system_message()),
|
85 |
+
MessagesPlaceholder(variable_name="history"),
|
86 |
+
HumanMessagePromptTemplate.from_template("""{input}""")
|
87 |
+
])
|
88 |
+
|
89 |
+
# Create conversation chain
|
90 |
+
self.conversation = ConversationChain(memory=self.memory, prompt=prompt,
|
91 |
+
llm=self.llm, verbose=False)
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def _specify_system_message(self):
|
96 |
+
"""Specify the behavior of the chatbot, which consists of the following aspects:
|
97 |
+
- general context: conducting conversation/debate under given scenario
|
98 |
+
- the language spoken
|
99 |
+
- purpose of the simulated conversation/debate
|
100 |
+
- language complexity requirement
|
101 |
+
- exchange length requirement
|
102 |
+
- other nuance constraints
|
103 |
+
|
104 |
+
Outputs:
|
105 |
+
--------
|
106 |
+
prompt: instructions for the chatbot.
|
107 |
+
"""
|
108 |
+
|
109 |
+
# Determine the number of exchanges between two bots
|
110 |
+
exchange_counts_dict = {
|
111 |
+
'Short': {'Conversation': 4, 'Debate': 4},
|
112 |
+
'Long': {'Conversation': 8, 'Debate': 8}
|
113 |
+
}
|
114 |
+
exchange_counts = exchange_counts_dict[self.session_length][self.learning_mode]
|
115 |
+
|
116 |
+
# Determine number of arguments in one debate round
|
117 |
+
argument_num_dict = {
|
118 |
+
'Beginner': 4,
|
119 |
+
'Intermediate': 6,
|
120 |
+
'Advanced': 8
|
121 |
+
}
|
122 |
+
|
123 |
+
# Determine language complexity
|
124 |
+
if self.proficiency_level == 'Beginner':
|
125 |
+
lang_requirement = """use as basic and simple vocabulary and
|
126 |
+
sentence structures as possible. Must avoid idioms, slang,
|
127 |
+
and complex grammatical constructs."""
|
128 |
+
|
129 |
+
elif self.proficiency_level == 'Intermediate':
|
130 |
+
lang_requirement = """use a wider range of vocabulary and a variety of sentence structures.
|
131 |
+
You can include some idioms and colloquial expressions,
|
132 |
+
but avoid highly technical language or complex literary expressions."""
|
133 |
+
|
134 |
+
elif self.proficiency_level == 'Advanced':
|
135 |
+
lang_requirement = """use sophisticated vocabulary, complex sentence structures, idioms,
|
136 |
+
colloquial expressions, and technical language where appropriate."""
|
137 |
+
|
138 |
+
else:
|
139 |
+
raise KeyError('Currently unsupported proficiency level!')
|
140 |
+
|
141 |
+
|
142 |
+
# Compile bot instructions
|
143 |
+
if self.learning_mode == 'Conversation':
|
144 |
+
prompt = f"""You are an AI that is good at role-playing.
|
145 |
+
You are simulating a real-life conversation happening in a {self.scenario} scenario.
|
146 |
+
In this scenario, you are playing as a {self.role['name']} {self.role['action']}, speaking to a
|
147 |
+
{self.oppo_role['name']} {self.oppo_role['action']}.
|
148 |
+
Your conversation should only be conducted in {self.language}. Do not translate.
|
149 |
+
This simulated {self.learning_mode} is designed for {self.language} farmers to understand best farming practices in {self.language}.
|
150 |
+
You should assume the farmers' proficiency level in
|
151 |
+
{self.language} is {self.proficiency_level}. Therefore, you should {lang_requirement}.
|
152 |
+
You should finish the conversation within {exchange_counts} exchanges with the {self.oppo_role['name']}.
|
153 |
+
Make your conversation with {self.oppo_role['name']} natural and typical in the considered scenario in
|
154 |
+
{self.language} cultural."""
|
155 |
+
|
156 |
+
elif self.learning_mode == 'Debate':
|
157 |
+
prompt = f"""You are an AI that is good at debating.
|
158 |
+
You are now engaged in a debate with the following topic: {self.scenario}.
|
159 |
+
In this debate, you are taking on the role of a {self.role['name']}.
|
160 |
+
Always remember your stances in the debate.
|
161 |
+
Your debate should only be conducted in {self.language}. Do not translate.
|
162 |
+
This simulated debate is designed for {self.language} farmers to understand best farming practices in {self.language}.
|
163 |
+
You should assume the farmers' proficiency level in {self.language}
|
164 |
+
is {self.proficiency_level}. Therefore, you should {lang_requirement}.
|
165 |
+
You will exchange opinions with another AI (who plays the {self.oppo_role['name']} role)
|
166 |
+
{exchange_counts} times.
|
167 |
+
Everytime you speak, you can only speak no more than
|
168 |
+
{argument_num_dict[self.proficiency_level]} sentences."""
|
169 |
+
|
170 |
+
else:
|
171 |
+
raise KeyError('Currently unsupported learning mode!')
|
172 |
+
|
173 |
+
# Give bot instructions
|
174 |
+
if self.starter:
|
175 |
+
# In case the current bot is the first one to speak
|
176 |
+
prompt += f"You are leading the {self.learning_mode}. \n"
|
177 |
+
|
178 |
+
else:
|
179 |
+
# In case the current bot is the second one to speak
|
180 |
+
prompt += f"Wait for the {self.oppo_role['name']}'s statement."
|
181 |
+
|
182 |
+
return prompt
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
class DualChatbot:
|
188 |
+
"""Class definition for dual-chatbots interaction system, created with LangChain."""
|
189 |
+
|
190 |
+
|
191 |
+
def __init__(self, engine, role_dict, language, scenario, proficiency_level,
|
192 |
+
learning_mode, session_length):
|
193 |
+
"""Args:
|
194 |
+
--------------
|
195 |
+
engine: the backbone llm-based chat model.
|
196 |
+
"OpenAI" stands for OpenAI chat model;
|
197 |
+
Other chat models are also possible in LangChain,
|
198 |
+
see https://python.langchain.com/en/latest/modules/models/chat/integrations.html
|
199 |
+
role_dict: dictionary to hold information regarding roles.
|
200 |
+
For conversation mode, an example role_dict is:
|
201 |
+
role_dict = {
|
202 |
+
'role1': {'name': 'Customer', 'action': 'ordering food'},
|
203 |
+
'role2': {'name': 'Waitstaff', 'action': 'taking the order'}
|
204 |
+
}
|
205 |
+
For debate mode, an example role_dict is:
|
206 |
+
role_dict = {
|
207 |
+
'role1': {'name': 'Proponent'},
|
208 |
+
'role2': {'name': 'Opponent'}
|
209 |
+
}
|
210 |
+
language: the language the conversation/debate will be conducted. This is
|
211 |
+
the target language the user is trying to learn.
|
212 |
+
scenario: for conversation, scenario represents the place where the conversation
|
213 |
+
is happening; for debate, scenario represents the debating topic.
|
214 |
+
proficiency_level: assumed user's proficiency level in target language. This
|
215 |
+
provides the guideline for the chatbots in terms of the
|
216 |
+
language complexity they will use. Three levels are possible:
|
217 |
+
"Beginner", "Intermediate", and "Advanced".
|
218 |
+
session_length: the number of exchanges between two chatbots. Two levels are possible:
|
219 |
+
"Short" or "Long".
|
220 |
+
learning_mode: two modes are possible for language learning purposes:
|
221 |
+
"Conversation" --> where two bots are chatting in a specified scenario;
|
222 |
+
"Debate" --> where two bots are debating on a specified topic.
|
223 |
+
"""
|
224 |
+
|
225 |
+
# Instantiate two chatbots
|
226 |
+
self.engine = engine
|
227 |
+
self.proficiency_level = proficiency_level
|
228 |
+
self.language = language
|
229 |
+
self.chatbots = role_dict
|
230 |
+
for k in role_dict.keys():
|
231 |
+
self.chatbots[k].update({'chatbot': Chatbot(engine)})
|
232 |
+
|
233 |
+
# Assigning roles for two chatbots
|
234 |
+
self.chatbots['role1']['chatbot'].instruct(role=self.chatbots['role1'],
|
235 |
+
oppo_role=self.chatbots['role2'],
|
236 |
+
language=language, scenario=scenario,
|
237 |
+
session_length=session_length,
|
238 |
+
proficiency_level=proficiency_level,
|
239 |
+
learning_mode=learning_mode, starter=True)
|
240 |
+
|
241 |
+
self.chatbots['role2']['chatbot'].instruct(role=self.chatbots['role2'],
|
242 |
+
oppo_role=self.chatbots['role1'],
|
243 |
+
language=language, scenario=scenario,
|
244 |
+
session_length=session_length,
|
245 |
+
proficiency_level=proficiency_level,
|
246 |
+
learning_mode=learning_mode, starter=False)
|
247 |
+
|
248 |
+
|
249 |
+
# Add session length
|
250 |
+
self.session_length = session_length
|
251 |
+
|
252 |
+
# Prepare conversation
|
253 |
+
self._reset_conversation_history()
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
def step(self):
|
258 |
+
"""Make one exchange round between two chatbots.
|
259 |
+
|
260 |
+
Outputs:
|
261 |
+
--------
|
262 |
+
output1: response of the first chatbot
|
263 |
+
output2: response of the second chatbot
|
264 |
+
translate1: translate of the first response
|
265 |
+
translate2: translate of the second response
|
266 |
+
"""
|
267 |
+
|
268 |
+
# Chatbot1 speaks
|
269 |
+
output1 = self.chatbots['role1']['chatbot'].conversation.predict(input=self.input1)
|
270 |
+
self.conversation_history.append({"bot": self.chatbots['role1']['name'], "text": output1})
|
271 |
+
|
272 |
+
# Pass output of chatbot1 as input to chatbot2
|
273 |
+
self.input2 = output1
|
274 |
+
|
275 |
+
# Chatbot2 speaks
|
276 |
+
output2 = self.chatbots['role2']['chatbot'].conversation.predict(input=self.input2)
|
277 |
+
self.conversation_history.append({"bot": self.chatbots['role2']['name'], "text": output2})
|
278 |
+
|
279 |
+
# Pass output of chatbot2 as input to chatbot1
|
280 |
+
self.input1 = output2
|
281 |
+
|
282 |
+
# Translate responses
|
283 |
+
translate1 = self.translate(output1)
|
284 |
+
translate2 = self.translate(output2)
|
285 |
+
|
286 |
+
return output1, output2, translate1, translate2
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
def translate(self, message):
|
291 |
+
"""Translate the generated script into target language.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
--------
|
295 |
+
message: input message that needs to be translated.
|
296 |
+
|
297 |
+
|
298 |
+
Outputs:
|
299 |
+
--------
|
300 |
+
translation: translated message.
|
301 |
+
"""
|
302 |
+
|
303 |
+
if self.language == 'English':
|
304 |
+
# No translation performed
|
305 |
+
translation = 'Translation: ' + message
|
306 |
+
|
307 |
+
else:
|
308 |
+
# Instantiate translator
|
309 |
+
if self.engine == 'OpenAI':
|
310 |
+
# Reminder: need to set up openAI API key
|
311 |
+
# (e.g., via environment variable OPENAI_API_KEY)
|
312 |
+
self.translator = ChatOpenAI(
|
313 |
+
model_name="gpt-3.5-turbo",
|
314 |
+
temperature=0.7
|
315 |
+
)
|
316 |
+
|
317 |
+
else:
|
318 |
+
raise KeyError("Currently unsupported translation model type!")
|
319 |
+
|
320 |
+
# Specify instruction
|
321 |
+
instruction = """Translate the following sentence from {src_lang}
|
322 |
+
(source language) to {trg_lang} (target language).
|
323 |
+
Here is the sentence in source language: \n
|
324 |
+
{src_input}."""
|
325 |
+
|
326 |
+
prompt = PromptTemplate(
|
327 |
+
input_variables=["src_lang", "trg_lang", "src_input"],
|
328 |
+
template=instruction,
|
329 |
+
)
|
330 |
+
|
331 |
+
# Create a language chain
|
332 |
+
translator_chain = LLMChain(llm=self.translator, prompt=prompt)
|
333 |
+
translation = translator_chain.predict(src_lang=self.language,
|
334 |
+
trg_lang="English",
|
335 |
+
src_input=message)
|
336 |
+
|
337 |
+
return translation
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
def summary(self, script):
|
342 |
+
"""Distill key language learning points from the generated scripts.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
--------
|
346 |
+
script: the generated conversation between two bots.
|
347 |
+
|
348 |
+
|
349 |
+
Outputs:
|
350 |
+
--------
|
351 |
+
summary: summary of the key learning points.
|
352 |
+
"""
|
353 |
+
|
354 |
+
# Instantiate summary bot
|
355 |
+
if self.engine == 'OpenAI':
|
356 |
+
# Reminder: need to set up openAI API key
|
357 |
+
# (e.g., via environment variable OPENAI_API_KEY)
|
358 |
+
self.summary_bot = ChatOpenAI(
|
359 |
+
model_name="gpt-3.5-turbo",
|
360 |
+
temperature=0.7
|
361 |
+
)
|
362 |
+
|
363 |
+
else:
|
364 |
+
raise KeyError("Currently unsupported summary model type!")
|
365 |
+
|
366 |
+
|
367 |
+
# Specify instruction
|
368 |
+
instruction = """The following text is a simulated conversation in
|
369 |
+
{src_lang}. The goal of this text is to aid {src_lang} learners to learn
|
370 |
+
real-life usage of {src_lang}. Therefore, your task is to summarize the key
|
371 |
+
learning points based on the given text. Specifically, you should summarize
|
372 |
+
the key vocabulary, grammar points, and function phrases that could be important
|
373 |
+
for students learning {src_lang}. Your summary should be conducted in English, but
|
374 |
+
use examples from the text in the original language where appropriate.
|
375 |
+
Remember your target students have a proficiency level of
|
376 |
+
{proficiency} in {src_lang}. You summarization must match with their
|
377 |
+
proficiency level.
|
378 |
+
|
379 |
+
The conversation is: \n
|
380 |
+
{script}."""
|
381 |
+
|
382 |
+
prompt = PromptTemplate(
|
383 |
+
input_variables=["src_lang", "proficiency", "script"],
|
384 |
+
template=instruction,
|
385 |
+
)
|
386 |
+
|
387 |
+
# Create a language chain
|
388 |
+
summary_chain = LLMChain(llm=self.summary_bot, prompt=prompt)
|
389 |
+
summary = summary_chain.predict(src_lang=self.language,
|
390 |
+
proficiency=self.proficiency_level,
|
391 |
+
script=script)
|
392 |
+
|
393 |
+
return summary
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
def _reset_conversation_history(self):
|
398 |
+
"""Reset the conversation history.
|
399 |
+
"""
|
400 |
+
# Placeholder for conversation history
|
401 |
+
self.conversation_history = []
|
402 |
+
|
403 |
+
# Inputs for two chatbots
|
404 |
+
self.input1 = "Start the conversation."
|
405 |
+
self.input2 = ""
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gTTS==2.3.2
|
2 |
+
langchain==0.0.205
|
3 |
+
openai==0.27.4
|
4 |
+
streamlit==1.23.1
|
5 |
+
streamlit_chat==0.0.2.2
|
6 |
+
python-dotenv==0.21.0
|