File size: 5,436 Bytes
fe18b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97210d3
 
fe18b00
97210d3
fe18b00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
import pandas as pd
import joblib
import matplotlib.pyplot as plt
import time

# Load the pre-trained numerical imputer, scaler, and model using joblib
num_imputer = joblib.load('numerical_imputer.joblib')
scaler = joblib.load('scaler.joblib')
model = joblib.load('Final_model.joblib')

# Define a function to preprocess the input data
def preprocess_input_data(input_data):
    input_data_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
    num_columns = input_data_df.select_dtypes(include='number').columns

    input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
    input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)

    return input_scaled_df

# Define a function to make the sepsis prediction
def predict_sepsis(input_data):
    input_scaled_df = preprocess_input_data(input_data)
    prediction = model.predict(input_scaled_df)[0]
    probabilities = model.predict_proba(input_scaled_df)[0]
    sepsis_status = "Positive" if prediction == 1 else "Negative"

    output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
    output_df['Prediction'] = sepsis_status
    output_df['Negative Probability'] = probabilities[0]
    output_df['Positive Probability'] = probabilities[1]

    return output_df, probabilities

# Create a Streamlit app
def main():
    st.title('Sepsis Prediction App')

    st.image("Strealit_.jpg")

    # How to use
    st.sidebar.title('How to Use')
    st.sidebar.markdown('1. Adjust the input parameters on the left sidebar.')
    st.sidebar.markdown('2. Click the "Predict" button to initiate the prediction.')
    st.sidebar.markdown('3. The app will simulate a prediction process with a progress bar.')
    st.sidebar.markdown('4. Once the prediction is complete, the results will be displayed below.')


    st.sidebar.title('Input Parameters')

    # Input parameter explanations
    st.sidebar.markdown('**PRG:** Plasma Glucose')
    PRG = st.sidebar.number_input('PRG', value=0.0)

    st.sidebar.markdown('**PL:** Blood Work Result 1')
    PL = st.sidebar.number_input('PL', value=0.0)

    st.sidebar.markdown('**PR:** Blood Pressure Measured')
    PR = st.sidebar.number_input('PR', value=0.0)

    st.sidebar.markdown('**SK:** Blood Work Result 2')
    SK = st.sidebar.number_input('SK', value=0.0)

    st.sidebar.markdown('**TS:** Blood Work Result 3')
    TS = st.sidebar.number_input('TS', value=0.0)

    st.sidebar.markdown('**M11:** BMI')
    M11 = st.sidebar.number_input('M11', value=0.0)

    st.sidebar.markdown('**BD2:** Blood Work Result 4')
    BD2 = st.sidebar.number_input('BD2', value=0.0)

    st.sidebar.markdown('**Age:** What is the Age of the Patient: ')
    Age = st.sidebar.number_input('Age', value=0.0)

    st.sidebar.markdown('**Insurance:** Does the patient have Insurance?')
    insurance_options = {0: 'NO', 1: 'YES'}
    Insurance = st.sidebar.radio('Insurance', list(insurance_options.keys()), format_func=lambda x: insurance_options[x])


    input_data = [[PRG, PL, PR, SK, TS, M11, BD2, Age, Insurance]]

    if st.sidebar.button('Predict'):
        with st.spinner("Predicting..."):
            # Simulate a long-running process
            progress_bar = st.progress(0)
            step = 20 # A big step will reduce the execution time
            for i in range(0, 100, step):
                time.sleep(0.1)
                progress_bar.progress(i + step)

            output_df, probabilities = predict_sepsis(input_data)

            st.subheader('Prediction Result')
            st.write(output_df)

            # Plot the probabilities
            fig, ax = plt.subplots()
            ax.bar(['Negative', 'Positive'], probabilities)
            ax.set_xlabel('Sepsis Status')
            ax.set_ylabel('Probability')
            ax.set_title('Sepsis Prediction Probabilities')
            st.pyplot(fig)

            # Print feature importance

            if hasattr(model, 'coef_'):
                feature_importances = model.coef_[0]
                feature_names = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance']

                importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})
                importance_df = importance_df.sort_values('Importance', ascending=False)

                st.subheader('Feature Importance')
                fig, ax = plt.subplots()
                bars = ax.bar(importance_df['Feature'], importance_df['Importance'])
                ax.set_xlabel('Feature')
                ax.set_ylabel('Importance')
                ax.set_title('Feature Importance')
                ax.tick_params(axis='x', rotation=45)

                # Add data labels to the bars
                for bar in bars:
                    height = bar.get_height()
                    ax.annotate(f'{height:.2f}', xy=(bar.get_x() + bar.get_width() / 2, height),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
                st.pyplot(fig)


                #st.subheader('Feature Importance')
                #st.write(importance_df)
            else:
                st.write('Feature importance is not available for this model.')

if __name__ == '__main__':
    main()