import pandas as pd import joblib from fastapi import FastAPI import uvicorn import numpy as np import os app = FastAPI() def load_model(): num_imputer_filepath = "numerical_imputer.joblib" scaler_filepath = "scaler.joblib" model_filepath = "lr_model.joblib" num_imputer = joblib.load(num_imputer_filepath) scaler = joblib.load(scaler_filepath) model = joblib.load(model_filepath) return num_imputer, scaler, model def preprocess_input_data(input_data, num_imputer, scaler): input_data_df = pd.DataFrame([input_data]) input_data_imputed_num = num_imputer.transform(input_data_df) input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=input_data_df.columns) return input_scaled_df @app.get("/") def read_root(): info = """ Welcome to the Sepsis Prediction API! πŸ©ΊπŸ’‰. This API provides advanced machine learning predictions for sepsis. βš‘πŸ“Š For more information and to explore the API's capabilities, please visit the documentation: https://abubakari-sepsis-fastapi-prediction-app.hf.space/docs/ """ return info.strip() @app.get("/sepsis/predict") def predict_sepsis_endpoint(PRG: float, PL: float, PR: float, SK: float, TS: float, M11: float, BD2: float, Age: float, Insurance: int): num_imputer, scaler, model = load_model() input_data = { 'PRG': [PRG], 'PL': [PL], 'PR': [PR], 'SK': [SK], 'TS': [TS], 'M11': [M11], 'BD2': [BD2], 'Age': [Age], 'Insurance': [Insurance] } input_scaled_df = preprocess_input_data(input_data, num_imputer, scaler) probabilities = model.predict_proba(input_scaled_df)[0] prediction = np.argmax(probabilities) sepsis_status = "Positive" if prediction == 1 else "Negative" probability = probabilities[1] if prediction == 1 else probabilities[0] #statement = f"The patient is {sepsis_status}. There is a {'high' if prediction == 1 else 'low'} probability ({probability:.2f}) that the patient is susceptible to developing sepsis." if prediction == 1: status_icon = "βœ”" # Red 'X' icon for positive sepsis prediction sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." else: status_icon = "✘" # Green checkmark icon for negative sepsis prediction sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms." statement = f"The patient's sepsis status is {sepsis_status} {status_icon} with a probability of {probability:.2f}. {sepsis_explanation}" user_input_statement = "Please note this is the user-inputted data: " output_df = pd.DataFrame([input_data]) result = {'predicted_sepsis': sepsis_status, 'statement': statement, 'user_input_statement': user_input_statement, 'input_data_df': output_df.to_dict('records')} return result if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860, reload=True)