|
import pandas as pd |
|
import joblib |
|
from fastapi import FastAPI |
|
import uvicorn |
|
import numpy as np |
|
import os |
|
|
|
app = FastAPI() |
|
|
|
def load_model(): |
|
num_imputer_filepath = "numerical_imputer.joblib" |
|
scaler_filepath = "scaler.joblib" |
|
model_filepath = "lr_model.joblib" |
|
|
|
num_imputer = joblib.load(num_imputer_filepath) |
|
scaler = joblib.load(scaler_filepath) |
|
model = joblib.load(model_filepath) |
|
|
|
return num_imputer, scaler, model |
|
|
|
def preprocess_input_data(input_data, num_imputer, scaler): |
|
input_data_df = pd.DataFrame(input_data) |
|
num_columns = [col for col in input_data_df.columns if input_data_df[col].dtype != 'object'] |
|
input_data_imputed_num = num_imputer.transform(input_data_df[num_columns]) |
|
input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns) |
|
return input_scaled_df |
|
|
|
@app.get("/") |
|
def read_root(): |
|
|
|
info = """ |
|
Welcome to the Sepsis Prediction API! π©Ίπ. This API provides advanced machine learning predictions for sepsis. β‘π For more information and to explore the API's capabilities, please visit the documentation: https://abubakari-sepsis-fastapi-prediction-app.hf.space/docs/ |
|
""" |
|
return info.strip() |
|
|
|
|
|
@app.get("/sepsis/predict") |
|
def predict_sepsis_endpoint(PRG: float, PL: float, PR: float, SK: float, TS: float, |
|
M11: float, BD2: float, Age: float, Insurance: int): |
|
num_imputer, scaler, model = load_model() |
|
|
|
input_data = { |
|
'PRG': PRG, |
|
'PL': PL, |
|
'PR': PR, |
|
'SK': SK, |
|
'TS': TS, |
|
'M11': M11, |
|
'BD2': BD2, |
|
'Age': Age, |
|
'Insurance': Insurance |
|
} |
|
|
|
input_scaled_df = preprocess_input_data(input_data, num_imputer, scaler) |
|
|
|
probabilities = model.predict_proba(input_scaled_df)[0] |
|
prediction = np.argmax(probabilities) |
|
|
|
sepsis_status = "Positive" if prediction == 1 else "Negative" |
|
|
|
probability = probabilities[1] if prediction == 1 else probabilities[0] |
|
|
|
|
|
|
|
if prediction == 1: |
|
status_icon = "β" |
|
sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." |
|
else: |
|
status_icon = "β" |
|
sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms." |
|
|
|
statement = f"The patient's sepsis status is {sepsis_status} {status_icon} with a probability of {probability:.2f}. {sepsis_explanation}" |
|
|
|
user_input_statement = "Please note this is the user-inputted data: " |
|
|
|
output_df = pd.DataFrame([input_data]) |
|
|
|
result = {'predicted_sepsis': sepsis_status, 'statement': statement, 'user_input_statement': user_input_statement, 'input_data_df': output_df.to_dict('records')} |
|
|
|
return result |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860, reload=True) |
|
|