Abubakari commited on
Commit
726657d
1 Parent(s): cbf836e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -12
app.py CHANGED
@@ -54,18 +54,22 @@ def f_BCNOLLN(y1, y2, mu1, sigma1, alpha1, beta1, mu2, sigma2, alpha2, beta2, la
54
  # Streamlit app
55
  st.title('BCNOLLN Distribution Visualizer')
56
 
57
- # Input fields for parameters
58
- mu1 = st.sidebar.number_input('Mean μ1', value=0.0)
59
- sigma1 = st.sidebar.number_input('Standard deviation σ1', value=1.0, min_value=0.1)
60
- alpha1 = st.sidebar.number_input('Alpha1 α1', value=0.2, min_value=0.0, max_value=1.0)
61
- beta1 = st.sidebar.number_input('Beta1 β1', value=0.2, min_value=0.0, max_value=1.0)
62
-
63
- mu2 = st.sidebar.number_input('Mean μ2', value=0.0)
64
- sigma2 = st.sidebar.number_input('Standard deviation σ2', value=1.0, min_value=0.1)
65
- alpha2 = st.sidebar.number_input('Alpha2 α2', value=0.9, min_value=0.0, max_value=1.0)
66
- beta2 = st.sidebar.number_input('Beta2 β2', value=0.3, min_value=0.0, max_value=1.0)
67
-
68
- lambd = st.sidebar.number_input('Lambda λ', value=-0.5)
 
 
 
 
69
 
70
  # Generate y1 and y2 values
71
  y1, y2 = np.meshgrid(np.linspace(-3, 3, 100), np.linspace(-3, 3, 100))
 
54
  # Streamlit app
55
  st.title('BCNOLLN Distribution Visualizer')
56
 
57
+ # Sidebar title and explanation
58
+ st.sidebar.title('Parameters')
59
+ st.sidebar.write('Adjust the parameters below to visualize the BCNOLLN distribution.')
60
+
61
+ # Input fields for parameters with sliders
62
+ mu1 = st.sidebar.slider('Mean μ1', min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
63
+ sigma1 = st.sidebar.slider('Standard deviation σ1', min_value=0.1, max_value=10.0, value=1.0, step=0.1)
64
+ alpha1 = st.sidebar.slider('Alpha1 α1', min_value=0.0, max_value=1.0, value=0.2, step=0.01)
65
+ beta1 = st.sidebar.slider('Beta1 β1', min_value=0.0, max_value=1.0, value=0.2, step=0.01)
66
+
67
+ mu2 = st.sidebar.slider('Mean μ2', min_value=-10.0, max_value=10.0, value=0.0, step=0.1)
68
+ sigma2 = st.sidebar.slider('Standard deviation σ2', min_value=0.1, max_value=10.0, value=1.0, step=0.1)
69
+ alpha2 = st.sidebar.slider('Alpha2 α2', min_value=0.0, max_value=1.0, value=0.9, step=0.01)
70
+ beta2 = st.sidebar.slider('Beta2 β2', min_value=0.0, max_value=1.0, value=0.3, step=0.01)
71
+
72
+ lambd = st.sidebar.slider('Lambda λ', min_value=-1.0, max_value=1.0, value=-0.5, step=0.01)
73
 
74
  # Generate y1 and y2 values
75
  y1, y2 = np.meshgrid(np.linspace(-3, 3, 100), np.linspace(-3, 3, 100))