|
|
|
import streamlit as st |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from scipy.stats import norm |
|
import plotly.graph_objects as go |
|
|
|
|
|
def Phi(z): |
|
return norm.cdf(z) |
|
|
|
def phi(z): |
|
return norm.pdf(z) |
|
|
|
|
|
def F_BCNOLLN(y1, y2, mu1, sigma1, alpha1, beta1, mu2, sigma2, alpha2, beta2, lambd): |
|
|
|
z1 = (y1 - mu1) / sigma1 |
|
z2 = (y2 - mu2) / sigma2 |
|
|
|
|
|
H1_z1 = Phi(z1)**alpha1 + (1 - Phi(z1))**beta1 |
|
H2_z2 = Phi(z2)**alpha2 + (1 - Phi(z2))**beta2 |
|
|
|
|
|
term1 = (Phi(z1)*alpha1 / H1_z1)**(-lambd) |
|
term2 = (Phi(z2)*alpha2 / H2_z2)**(-lambd) |
|
term = term1 + term2 - 1 |
|
cdf = term**(-1/lambd) |
|
|
|
return cdf |
|
|
|
def f_BCNOLLN(y1, y2, mu1, sigma1, alpha1, beta1, mu2, sigma2, alpha2, beta2, lambd): |
|
z1 = (y1 - mu1) / sigma1 |
|
z2 = (y2 - mu2) / sigma2 |
|
|
|
H1_z1 = Phi(z1)**alpha1 + (1 - Phi(z1))**beta1 |
|
H2_z2 = Phi(z2)**alpha2 + (1 - Phi(z2))**beta2 |
|
|
|
term1 = (Phi(z1)**alpha1 / H1_z1)**(-lambd) |
|
term2 = (Phi(z2)**alpha2 / H2_z2)**(-lambd) |
|
common_term = (term1 + term2 - 1)**(-(2*lambd + 1)/lambd) |
|
|
|
factor1 = (phi(z1) * Phi(z1)**(alpha1 - 1) * (1 - Phi(z1))**(beta1 - 1) * |
|
(alpha1 + (beta1 - alpha1) * Phi(z1))) / (sigma1 * H1_z1**2) |
|
|
|
factor2 = (phi(z2) * Phi(z2)**(alpha2 - 1) * (1 - Phi(z2))**(beta2 - 1) * |
|
(alpha2 + (beta2 - alpha2) * Phi(z2))) / (sigma2 * H2_z2**2) |
|
|
|
pdf = (lambd + 1) * common_term * (factor1 * factor2) |
|
|
|
return pdf |
|
|
|
|
|
st.title('BCNOLLN Distribution Visualizer') |
|
|
|
|
|
mu1 = st.sidebar.number_input('Mean μ1', value=0.0) |
|
sigma1 = st.sidebar.number_input('Standard deviation σ1', value=1.0, min_value=0.1) |
|
alpha1 = st.sidebar.number_input('Alpha1 α1', value=0.2, min_value=0.0, max_value=1.0) |
|
beta1 = st.sidebar.number_input('Beta1 β1', value=0.2, min_value=0.0, max_value=1.0) |
|
|
|
mu2 = st.sidebar.number_input('Mean μ2', value=0.0) |
|
sigma2 = st.sidebar.number_input('Standard deviation σ2', value=1.0, min_value=0.1) |
|
alpha2 = st.sidebar.number_input('Alpha2 α2', value=0.9, min_value=0.0, max_value=1.0) |
|
beta2 = st.sidebar.number_input('Beta2 β2', value=0.3, min_value=0.0, max_value=1.0) |
|
|
|
lambd = st.sidebar.number_input('Lambda λ', value=-0.5) |
|
|
|
|
|
y1, y2 = np.meshgrid(np.linspace(-3, 3, 100), np.linspace(-3, 3, 100)) |
|
|
|
|
|
pdf_values = f_BCNOLLN(y1, y2, mu1, sigma1, alpha1, beta1, mu2, sigma2, alpha2, beta2, lambd) |
|
|
|
|
|
cdf_values = F_BCNOLLN(y1, y2, mu1, sigma1, alpha1, beta1, mu2, sigma2, alpha2, beta2, lambd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.subheader('Results for PDF Plot') |
|
|
|
|
|
fig = go.Figure(data=[go.Surface(z=pdf_values, x=y1, y=y2, colorscale='Viridis')]) |
|
fig.update_layout(title='BCNOLLN PDF 3D Contour Plot', autosize=True, |
|
scene=dict( |
|
xaxis_title='y1', |
|
yaxis_title='y2', |
|
zaxis_title='PDF' |
|
)) |
|
|
|
|
|
st.plotly_chart(fig) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
contours = ax.contour(Y1, Y2, pdf_values, levels=20) |
|
ax.clabel(contours, inline=True, fontsize=8, fmt='%.3f') |
|
|
|
ax.set_xlabel('y1') |
|
ax.set_ylabel('y2') |
|
ax.set_title('BCEOLLN Distribution Contour Plot') |
|
|
|
|
|
st.pyplot(fig) |
|
|
|
|
|
fig_2d, ax = plt.subplots() |
|
cp = ax.contourf(y1, y2, pdf_values, cmap='viridis') |
|
fig_2d.colorbar(cp) |
|
ax.set_title('BCNOLLN PDF 2D Contour Plot') |
|
ax.set_xlabel('y1') |
|
ax.set_ylabel('y2') |
|
|
|
|
|
st.pyplot(fig_2d) |
|
|
|
|
|
st.subheader('Results for CDF Plot') |
|
|
|
|
|
fig = go.Figure(data=[go.Surface(z=cdf_values, x=y1, y=y2, colorscale='Viridis')]) |
|
fig.update_layout(title='BCNOLLN CDF 3D Contour Plot', autosize=True, |
|
scene=dict( |
|
xaxis_title='y1', |
|
yaxis_title='y2', |
|
zaxis_title='CDF' |
|
)) |
|
|
|
|
|
st.plotly_chart(fig) |
|
|
|
|
|
fig_2d, ax = plt.subplots() |
|
cp = ax.contourf(y1, y2, cdf_values, cmap='viridis') |
|
fig_2d.colorbar(cp) |
|
ax.set_title('BCNOLLN PDF 2D Contour Plot') |
|
ax.set_xlabel('y1') |
|
ax.set_ylabel('y2') |
|
|
|
|
|
st.pyplot(fig_2d) |
|
|
|
|
|
|