Spaces:
Running
Running
Abso1ute666
commited on
Commit
•
b2fb34e
1
Parent(s):
fbec9fe
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
6 |
+
|
7 |
+
image_processor = AutoImageProcessor.from_pretrained("./Mymodel/")
|
8 |
+
model = AutoModelForImageClassification.from_pretrained("./Mymodel/")
|
9 |
+
|
10 |
+
def predict(my_image):
|
11 |
+
|
12 |
+
image = Image.fromarray(image.astype('uint8'))
|
13 |
+
|
14 |
+
pipe = pipeline("image-classification",
|
15 |
+
model=model,
|
16 |
+
feature_extractor=image_processor)
|
17 |
+
|
18 |
+
pred = pipe(image)
|
19 |
+
|
20 |
+
plt.imshow(image)
|
21 |
+
plt.title(pred[0]['label'].replace('_', ' ').title())
|
22 |
+
plt.axis(False)
|
23 |
+
plt.show()
|
24 |
+
|
25 |
+
print(f"Predicted the above image as a {pred[0]['label'].replace('_', ' ').title()} with {pred[0]['score']*100:.2f}% confidence")
|
26 |
+
|
27 |
+
run = True
|
28 |
+
while run:
|
29 |
+
|
30 |
+
inp = input('Is the prediction correct?')
|
31 |
+
if inp.lower() == 'yes':
|
32 |
+
print(f"""
|
33 |
+
{food_info[pred[0]['label'].replace('_', ' ').title()]['Description']}
|
34 |
+
|
35 |
+
Info: {food_info[pred[0]['label'].replace('_', ' ').title()]['Calories and Health Info']}""")
|
36 |
+
run = False
|
37 |
+
elif inp.lower() == 'no':
|
38 |
+
print(f"""
|
39 |
+
The image could be a {pred[1]['label'].replace('_', ' ').title()}, with a {pred[1]['score']*100:.2f}% confidence,
|
40 |
+
The image could be a {pred[2]['label'].replace('_', ' ').title()}, with a {pred[2]['score']*100:.2f}% confidence,
|
41 |
+
The image could be a {pred[3]['label'].replace('_', ' ').title()}, with a {pred[3]['score']*100:.2f}% confidence,
|
42 |
+
Or the image could be a {pred[4]['label'].replace('_', ' ').title()}, with a {pred[4]['score']*100:.2f}% confidence,
|
43 |
+
""")
|
44 |
+
run = False
|
45 |
+
else:
|
46 |
+
print('Please respond as yes or no')
|
47 |
+
|
48 |
+
iface = gr.Interface(fn=predict, inputs="image", outputs="image")
|
49 |
+
iface.launch()
|