Abso1ute666 commited on
Commit
b2fb34e
1 Parent(s): fbec9fe

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import matplotlib.pyplot as plt
3
+ import gradio as gr
4
+ from transformers import pipeline
5
+ from transformers import AutoModelForImageClassification, AutoImageProcessor
6
+
7
+ image_processor = AutoImageProcessor.from_pretrained("./Mymodel/")
8
+ model = AutoModelForImageClassification.from_pretrained("./Mymodel/")
9
+
10
+ def predict(my_image):
11
+
12
+ image = Image.fromarray(image.astype('uint8'))
13
+
14
+ pipe = pipeline("image-classification",
15
+ model=model,
16
+ feature_extractor=image_processor)
17
+
18
+ pred = pipe(image)
19
+
20
+ plt.imshow(image)
21
+ plt.title(pred[0]['label'].replace('_', ' ').title())
22
+ plt.axis(False)
23
+ plt.show()
24
+
25
+ print(f"Predicted the above image as a {pred[0]['label'].replace('_', ' ').title()} with {pred[0]['score']*100:.2f}% confidence")
26
+
27
+ run = True
28
+ while run:
29
+
30
+ inp = input('Is the prediction correct?')
31
+ if inp.lower() == 'yes':
32
+ print(f"""
33
+ {food_info[pred[0]['label'].replace('_', ' ').title()]['Description']}
34
+
35
+ Info: {food_info[pred[0]['label'].replace('_', ' ').title()]['Calories and Health Info']}""")
36
+ run = False
37
+ elif inp.lower() == 'no':
38
+ print(f"""
39
+ The image could be a {pred[1]['label'].replace('_', ' ').title()}, with a {pred[1]['score']*100:.2f}% confidence,
40
+ The image could be a {pred[2]['label'].replace('_', ' ').title()}, with a {pred[2]['score']*100:.2f}% confidence,
41
+ The image could be a {pred[3]['label'].replace('_', ' ').title()}, with a {pred[3]['score']*100:.2f}% confidence,
42
+ Or the image could be a {pred[4]['label'].replace('_', ' ').title()}, with a {pred[4]['score']*100:.2f}% confidence,
43
+ """)
44
+ run = False
45
+ else:
46
+ print('Please respond as yes or no')
47
+
48
+ iface = gr.Interface(fn=predict, inputs="image", outputs="image")
49
+ iface.launch()