File size: 20,673 Bytes
7f15565
 
0a3a31f
7f15565
 
4aee695
 
 
 
 
 
 
7f15565
4aee695
 
7f15565
4aee695
 
 
 
 
 
 
 
 
 
7f15565
4aee695
 
7f15565
4aee695
 
7f15565
4aee695
 
7f15565
4aee695
 
 
 
 
7f15565
 
 
 
4aee695
 
 
 
 
 
 
 
 
 
 
 
 
7f15565
 
4aee695
7f15565
4aee695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3a31f
4aee695
 
 
 
7f15565
4aee695
7f15565
4aee695
 
 
 
 
 
7f15565
4aee695
 
 
 
 
 
 
0a3a31f
4aee695
 
 
 
7f15565
4aee695
7f15565
4aee695
 
 
 
 
 
0a3a31f
7f15565
4aee695
 
 
 
 
 
 
 
 
 
 
 
 
7f15565
 
 
0a3a31f
7f15565
 
 
0a3a31f
7f15565
4aee695
7f15565
4aee695
 
 
252c37d
4aee695
7f15565
 
 
0a3a31f
7f15565
 
 
4aee695
7f15565
 
4aee695
7f15565
 
 
 
0a3a31f
7f15565
4aee695
 
7f15565
4aee695
 
 
7f15565
4aee695
 
0a3a31f
4aee695
 
0a3a31f
4aee695
0a3a31f
 
 
4aee695
 
 
 
 
 
 
 
 
 
 
 
7f15565
 
4aee695
 
 
 
 
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3a31f
4aee695
 
 
7f15565
4aee695
 
 
 
 
 
7f15565
 
4aee695
 
 
 
 
 
 
 
7f15565
4aee695
 
 
 
 
 
7f15565
 
4aee695
 
 
 
 
 
0a3a31f
4aee695
 
 
 
 
 
 
 
 
 
7f15565
 
0a3a31f
7f15565
252c37d
 
7f15565
0a3a31f
7f15565
252c37d
0a3a31f
 
 
252c37d
 
 
 
 
 
 
7f15565
252c37d
7f15565
 
 
 
 
 
 
 
252c37d
7f15565
252c37d
7f15565
 
 
 
 
 
 
 
252c37d
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3a31f
4aee695
 
 
7f15565
0a3a31f
4aee695
7f15565
4aee695
 
0a3a31f
 
 
4aee695
 
 
 
 
 
 
7f15565
4aee695
7f15565
 
 
 
 
 
 
 
4aee695
7f15565
4aee695
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aee695
7f15565
 
 
0a3a31f
7f15565
 
252c37d
7f15565
 
 
 
 
 
 
 
 
0a3a31f
7f15565
 
 
 
 
4aee695
7f15565
 
 
 
 
0a3a31f
7f15565
4aee695
 
7f15565
4aee695
 
 
 
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3a31f
4aee695
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6dd15
4aee695
7f15565
 
4aee695
7f15565
 
4aee695
7135245
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7135245
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aee695
7f15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aee695
 
0a3a31f
7f15565
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import os
import openai

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"] 
def save_file(input_file):
    import shutil
    import os

    destination_dir = "/home/user/app/file/"
    os.makedirs(destination_dir, exist_ok=True)

    output_dir="/home/user/app/file/"

    for file in input_file:
      shutil.copy(file.name, output_dir)

    return "File(s) saved successfully!"

def process_file():
    from langchain.document_loaders import PyPDFLoader
    from langchain.document_loaders import DirectoryLoader
    from langchain.document_loaders import TextLoader
    from langchain.document_loaders import Docx2txtLoader
    from langchain.vectorstores import FAISS
    from langchain.embeddings.openai import OpenAIEmbeddings
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    import openai

    loader1 = DirectoryLoader('/home/user/app/file/', glob="./*.pdf", loader_cls=PyPDFLoader)
    document1 = loader1.load()

    loader2 = DirectoryLoader('/home/user/app/file/', glob="./*.txt", loader_cls=TextLoader)
    document2 = loader2.load()

    loader3 = DirectoryLoader('/home/user/app/file/', glob="./*.docx", loader_cls=Docx2txtLoader)
    document3 = loader3.load()

    document1.extend(document2)
    document1.extend(document3)

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len)

    docs = text_splitter.split_documents(document1)
    embeddings = OpenAIEmbeddings()

    file_db = FAISS.from_documents(docs, embeddings)
    file_db.save_local("/home/user/app/file_db/")

    return "File(s) processed successfully!"

def formatted_response(docs, response):
    formatted_output = response + "\n\nSources"

    for i, doc in enumerate(docs):
        source_info = doc.metadata.get('source', 'Unknown source')
        page_info = doc.metadata.get('page', None)

        file_name = source_info.split('/')[-1].strip()

        if page_info is not None:
            formatted_output += f"\n{file_name}\tpage no {page_info}"
        else:
            formatted_output += f"\n{file_name}"

    return formatted_output

def search_file(question):
    from langchain.embeddings.openai import OpenAIEmbeddings
    from langchain.vectorstores import FAISS
    from langchain.chains.question_answering import load_qa_chain
    from langchain.callbacks import get_openai_callback
    from langchain.llms import OpenAI
    import openai
    from langchain.chat_models import ChatOpenAI

    embeddings = OpenAIEmbeddings()
    file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
    docs = file_db.similarity_search(question)

    llm = ChatOpenAI(model_name='gpt-3.5-turbo')
    chain = load_qa_chain(llm, chain_type="stuff")

    with get_openai_callback() as cb:
        response = chain.run(input_documents=docs, question=question)
        print(cb)

    return formatted_response(docs, response)

def local_search(question):
    from langchain.embeddings.openai import OpenAIEmbeddings
    from langchain.vectorstores import FAISS
    from langchain.chains.question_answering import load_qa_chain
    from langchain.callbacks import get_openai_callback
    from langchain.llms import OpenAI
    import openai
    from langchain.chat_models import ChatOpenAI

    embeddings = OpenAIEmbeddings()
    file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
    docs = file_db.similarity_search(question)

    llm = ChatOpenAI(model_name='gpt-3.5-turbo')
    chain = load_qa_chain(llm, chain_type="stuff")

    with get_openai_callback() as cb:
        response = chain.run(input_documents=docs, question=question)
        print(cb)

    return formatted_response(docs, response)

def delete_file():

    import shutil

    path1 = "/home/user/app/file/"
    path2 = "/home/user/app/file_db/"

    try:
        shutil.rmtree(path1)
        shutil.rmtree(path2)
        return "Deleted Successfully"

    except:
        return "Already Deleted"

def soap_refresh():
    import os
    import gradio as gr

    destination_folder = "/home/user/app/soap_docs/"
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    directory = '/home/user/app/soap_docs/'
    file_list = []

    for root, dirs, files in os.walk(directory):
        for file in files:
            file_list.append(file)
    return gr.Dropdown.update(choices=file_list)

def sbar_refresh():
    import os
    import gradio as gr

    destination_folder = "/home/user/app/sbar_docs/"
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    directory = '/home/user/app/sbar_docs/'
    file_list = []

    for root, dirs, files in os.walk(directory):
        for file in files:
            file_list.append(file)
    return gr.Dropdown.update(choices=file_list)

def ask_soap(doc_name, question):
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI
    import openai
    import docx

    docx_path = "/home/user/app/soap_docs/" + doc_name

    doc = docx.Document(docx_path)
    extracted_text = "Extracted text:\n\n\n"

    for paragraph in doc.paragraphs:
        extracted_text += paragraph.text + "\n"

    question = (
        "\n\nUse the 'Extracted text' to answer the following question:\n" + question
    )
    extracted_text += question

    if extracted_text:
        print(extracted_text)
    else:
        print("failed")

    template = """Question: {question}

    Answer: Let's think step by step."""

    prompt = PromptTemplate(template=template, input_variables=["question"])

    llm = ChatOpenAI(model_name="gpt-3.5-turbo")
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    response = llm_chain.run(extracted_text)

    return response

def ask_sbar(doc_name, question):
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI
    import openai
    import docx

    docx_path = "/home/user/app/sbar_docs/" + doc_name

    doc = docx.Document(docx_path)
    extracted_text = "Extracted text:\n\n\n"

    for paragraph in doc.paragraphs:
        extracted_text += paragraph.text + "\n"

    question = (
        "\n\nUse the 'Extracted text' to answer the following question:\n" + question
    )
    extracted_text += question

    if extracted_text:
        print(extracted_text)
    else:
        print("failed")

    template = """Question: {question}

    Answer: Let's think step by step."""

    prompt = PromptTemplate(template=template, input_variables=["question"])

    llm = ChatOpenAI(model_name="gpt-3.5-turbo")
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    response = llm_chain.run(extracted_text)

    return response

def search_gpt(question):
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI

    template = """Question: {question}

    Answer: Let's think step by step."""

    prompt = PromptTemplate(template=template, input_variables=["question"])

    llm = ChatOpenAI(model_name="gpt-3.5-turbo")
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    response = llm_chain.run(question)

    return response

def local_gpt(question):
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI

    template = """Question: {question}

    Answer: Let's think step by step."""

    prompt = PromptTemplate(template=template, input_variables=["question"])

    llm = ChatOpenAI(model_name="gpt-3.5-turbo")
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    response = llm_chain.run(question)

    return response

global output

def audio_text(filepath):
    import openai
    global output

    audio = open(filepath, "rb")
    transcript = openai.Audio.transcribe("whisper-1", audio)
    output = transcript["text"]

    return output

global soap_response
global sbar_response

def transcript_soap(text):
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI

    global soap_response

    question = (
        "Use the following context given below to generate a detailed SOAP Report:\n\n"
    )
    question += text
    print(question)

    template = """Question: {question}

    Answer: Let's think step by step."""

    word_count = len(text.split())
    prompt = PromptTemplate(template=template, input_variables=["question"])

    if word_count < 2000:
        llm = ChatOpenAI(model="gpt-3.5-turbo")
    elif word_count < 5000:
        llm = ChatOpenAI(model="gpt-4")
    else:
        llm = ChatOpenAI(model="gpt-4-32k")

    llm_chain = LLMChain(prompt=prompt, llm=llm)
    soap_response = llm_chain.run(question)

    return soap_response

def transcript_sbar(text):
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI

    global sbar_response

    question = (
        "Use the following context given below to generate a detailed SBAR Report:\n\n"
    )
    question += text
    print(question)

    template = """Question: {question}

    Answer: Let's think step by step."""

    word_count = len(text.split())
    prompt = PromptTemplate(template=template, input_variables=["question"])

    if word_count < 2000:
        llm = ChatOpenAI(model="gpt-3.5-turbo")
    elif word_count < 5000:
        llm = ChatOpenAI(model="gpt-4")
    else:
        llm = ChatOpenAI(model="gpt-4-32k")

    llm_chain = LLMChain(prompt=prompt, llm=llm)
    sbar_response = llm_chain.run(question)

    return sbar_response

def text_soap():
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI

    global output
    global soap_response
    output = output

    question = (
        "Use the following context given below to generate a detailed SOAP Report:\n\n"
    )
    question += output
    print(question)

    template = """Question: {question}

    Answer: Let's think step by step."""

    word_count = len(output.split())
    prompt = PromptTemplate(template=template, input_variables=["question"])

    if word_count < 2000:
        llm = ChatOpenAI(model="gpt-3.5-turbo")
    elif word_count < 5000:
        llm = ChatOpenAI(model="gpt-4")
    else:
        llm = ChatOpenAI(model="gpt-4-32k")

    llm_chain = LLMChain(prompt=prompt, llm=llm)
    soap_response = llm_chain.run(question)

    return soap_response

def text_sbar():
    from langchain.llms import OpenAI
    from langchain import PromptTemplate, LLMChain
    from langchain.chat_models import ChatOpenAI

    global output
    global sbar_response
    output = output

    question = (
        "Use the following context given below to generate a detailed SBAR Report:\n\n"
    )
    question += output
    print(question)

    template = """Question: {question}

    Answer: Let's think step by step."""

    word_count = len(output.split())
    prompt = PromptTemplate(template=template, input_variables=["question"])

    if word_count < 2000:
        llm = ChatOpenAI(model="gpt-3.5-turbo")
    elif word_count < 5000:
        llm = ChatOpenAI(model="gpt-4")
    else:
        llm = ChatOpenAI(model="gpt-4-32k")

    llm_chain = LLMChain(prompt=prompt, llm=llm)
    sbar_response = llm_chain.run(question)

    return sbar_response

def soap_docx(name):
    global soap_response
    soap_response = soap_response
    import docx
    import os

    destination_folder = "/home/user/app/soap_docs/"
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    path = f"/home/user/app/soap_docs/SOAP_{name}.docx"

    doc = docx.Document()
    doc.add_paragraph(soap_response)
    doc.save(path)

    return "Successfully saved .docx File"

def sbar_docx(name):
    global sbar_response
    sbar_response = sbar_response
    import docx
    import os

    destination_folder = "/home/user/app/sbar_docs/"
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    path = f"/home/user/app/sbar_docs/SBAR_{name}.docx"

    doc = docx.Document()
    doc.add_paragraph(sbar_response)
    doc.save(path)

    return "Successfully saved .docx File"

import gradio as gr

css = """
.col{
    max-width: 50%;
    margin: 0 auto;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("## <center>Medical App</center>")

    with gr.Tab("SOAP and SBAR Note Creation"):
      with gr.Column(elem_classes="col"):

        with gr.Tab("From Recorded Audio"):
          with gr.Column():

            mic_audio_input = gr.Audio(type="filepath", label="Speak to the Microphone")
            mic_audio_button = gr.Button("Generate Transcript")
            mic_audio_output = gr.Textbox(label="Output")

            mic_text_soap_button = gr.Button("Generate SOAP Report")
            mic_text_soap_output = gr.Textbox(label="Output")
            mic_text_sbar_button = gr.Button("Generate SBAR Report")
            mic_text_sbar_output = gr.Textbox(label="Output")

            mic_docx_input = gr.Textbox(label="Enter the name of .docx File")
            mic_soap_docx_button = gr.Button("Save SOAP .docx File")
            mic_soap_docx_output = gr.Textbox(label="Output")
            mic_sbar_docx_button = gr.Button("Save SBAR .docx File")
            mic_sbar_docx_output = gr.Textbox(label="Output")

        with gr.Tab("From Uploaded Audio"):
          with gr.Column():

            upload_audio_input = gr.Audio(type="filepath", label="Upload Audio File here")
            upload_audio_button = gr.Button("Generate Transcript")
            upload_audio_output = gr.Textbox(label="Output")

            upload_text_soap_button = gr.Button("Generate SOAP Report")
            upload_text_soap_output = gr.Textbox(label="Output")
            upload_text_sbar_button = gr.Button("Generate SBAR Report")
            upload_text_sbar_output = gr.Textbox(label="Output")

            upload_docx_input = gr.Textbox(label="Enter the name of .docx File")
            upload_soap_docx_button = gr.Button("Save SOAP .docx File")
            upload_soap_docx_output = gr.Textbox(label="Output")
            upload_sbar_docx_button = gr.Button("Save SBAR .docx File")
            upload_sbar_docx_output = gr.Textbox(label="Output")

        with gr.Tab("From Text Transcript"):
          with gr.Column():

            text_transcript_input = gr.Textbox(label="Enter your Transcript here")

            text_text_soap_button = gr.Button("Generate SOAP Report")
            text_text_soap_output = gr.Textbox(label="Output")
            text_text_sbar_button = gr.Button("Generate SBAR Report")
            text_text_sbar_output = gr.Textbox(label="Output")

            text_docx_input = gr.Textbox(label="Enter the name of .docx File")
            text_soap_docx_button = gr.Button("Save SOAP .docx File")
            text_soap_docx_output = gr.Textbox(label="Output")
            text_sbar_docx_button = gr.Button("Save SBAR .docx File")
            text_sbar_docx_output = gr.Textbox(label="Output")

    with gr.Tab("SOAP and SBAR Queries"):
      with gr.Column(elem_classes="col"):

        with gr.Tab("Query SOAP Reports"):
          with gr.Column():

            soap_refresh_button = gr.Button("Refresh")
            ask_soap_input = gr.Dropdown(label="Choose File")

            ask_soap_question = gr.Textbox(label="Enter Question here")
            ask_soap_button = gr.Button("Submit")
            ask_soap_output = gr.Textbox(label="Output")

        with gr.Tab("Query SBAR Reports"):
          with gr.Column():

            sbar_refresh_button = gr.Button("Refresh")
            ask_sbar_input = gr.Dropdown(label="Choose File")

            ask_sbar_question = gr.Textbox(label="Enter Question here")
            ask_sbar_button = gr.Button("Submit")
            ask_sbar_output = gr.Textbox(label="Output")

    with gr.Tab("All Queries"):
      with gr.Column(elem_classes="col"):

        local_search_input = gr.Textbox(label="Enter Question here")
        local_search_button = gr.Button("Search")
        local_search_output = gr.Textbox(label="Output")

        local_gpt_button = gr.Button("Ask ChatGPT")
        local_gpt_output = gr.Textbox(label="Output")


    with gr.Tab("Documents Queries"):
      with gr.Column(elem_classes="col"):

        with gr.Tab("Upload and Process Documents"):
          with gr.Column():

            file_upload_input = gr.Files(label="Upload File(s) here")
            file_upload_button = gr.Button("Upload")
            file_upload_output = gr.Textbox(label="Output")

            file_process_button = gr.Button("Process")
            file_process_output = gr.Textbox(label="Output")

        with gr.Tab("Query Documents"):
          with gr.Column():

            file_search_input = gr.Textbox(label="Enter Question here")
            file_search_button = gr.Button("Search")
            file_search_output = gr.Textbox(label="Output")

            search_gpt_button = gr.Button("Ask ChatGPT")
            search_gpt_output = gr.Textbox(label="Output")

            file_delete_button = gr.Button("Delete")
            file_delete_output = gr.Textbox(label="Output")

    ######################################################################################################
    file_upload_button.click(save_file, inputs=file_upload_input, outputs=file_upload_output)
    file_process_button.click(process_file, inputs=None, outputs=file_process_output)

    file_search_button.click(search_file, inputs=file_search_input, outputs=file_search_output)
    search_gpt_button.click(search_gpt, inputs=file_search_input, outputs=search_gpt_output)

    file_delete_button.click(delete_file, inputs=None, outputs=file_delete_output)

    ######################################################################################################
    local_search_button.click(local_search, inputs=local_search_input, outputs=local_search_output)
    local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)

    #######################################################################################################
    soap_refresh_button.click(soap_refresh, inputs=None, outputs=ask_soap_input)
    ask_soap_button.click(ask_soap, inputs=[ask_soap_input, ask_soap_question], outputs=ask_soap_output)

    sbar_refresh_button.click(sbar_refresh, inputs=None, outputs=ask_sbar_input)
    ask_sbar_button.click(ask_sbar, inputs=[ask_sbar_input, ask_sbar_question], outputs=ask_sbar_output)

    ####################################################################################################
    mic_audio_button.click(audio_text, inputs=mic_audio_input, outputs=mic_audio_output)

    mic_text_soap_button.click(text_soap, inputs=None, outputs=mic_text_soap_output)
    mic_text_sbar_button.click(text_sbar, inputs=None, outputs=mic_text_sbar_output)

    mic_soap_docx_button.click(soap_docx, inputs=mic_docx_input, outputs=mic_soap_docx_output)
    mic_sbar_docx_button.click(sbar_docx, inputs=mic_docx_input, outputs=mic_sbar_docx_output)
    ####################################################################################################
    upload_audio_button.click(audio_text, inputs=upload_audio_input, outputs=upload_audio_output)

    upload_text_soap_button.click(text_soap, inputs=None, outputs=upload_text_soap_output)
    upload_text_sbar_button.click(text_sbar, inputs=None, outputs=upload_text_sbar_output)

    upload_soap_docx_button.click(soap_docx, inputs=upload_docx_input, outputs=upload_soap_docx_output)
    upload_sbar_docx_button.click(sbar_docx, inputs=upload_docx_input, outputs=upload_sbar_docx_output)
    ###########################################################################################################
    text_text_soap_button.click(transcript_soap, inputs=text_transcript_input, outputs=text_text_soap_output)
    text_text_sbar_button.click(transcript_sbar, inputs=text_transcript_input, outputs=text_text_sbar_output)

    text_soap_docx_button.click(soap_docx, inputs=text_docx_input, outputs=text_soap_docx_output)
    text_sbar_docx_button.click(sbar_docx, inputs=text_docx_input, outputs=text_sbar_docx_output)
    #############################################################################################################

demo.queue()
demo.launch()