"""Keyword-table based index. Similar to a "hash table" in concept. LlamaIndex first tries to extract keywords from the source text, and stores the keywords as keys per item. It similarly extracts keywords from the query text. Then, it tries to match those keywords to existing keywords in the table. """ import logging from typing import Any, Dict, List, Optional, Sequence, Tuple, Type from gpt_index.data_structs.data_structs import KG from gpt_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex from gpt_index.indices.query.base import BaseGPTIndexQuery from gpt_index.indices.query.knowledge_graph.query import GPTKGTableQuery, KGQueryMode from gpt_index.indices.query.schema import QueryMode from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor from gpt_index.langchain_helpers.text_splitter import TextSplitter from gpt_index.prompts.default_prompts import ( DEFAULT_KG_TRIPLET_EXTRACT_PROMPT, DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE, ) from gpt_index.prompts.prompts import KnowledgeGraphPrompt from gpt_index.schema import BaseDocument from gpt_index.utils import get_new_id DQKET = DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE class GPTKnowledgeGraphIndex(BaseGPTIndex[KG]): """GPT Knowledge Graph Index. Build a KG by extracting triplets, and leveraging the KG during query-time. Args: kg_triple_extract_template (KnowledgeGraphPrompt): The prompt to use for extracting triplets. max_triplets_per_chunk (int): The maximum number of triplets to extract. """ index_struct_cls = KG def __init__( self, documents: Optional[Sequence[DOCUMENTS_INPUT]] = None, index_struct: Optional[KG] = None, kg_triple_extract_template: Optional[KnowledgeGraphPrompt] = None, max_triplets_per_chunk: int = 10, llm_predictor: Optional[LLMPredictor] = None, text_splitter: Optional[TextSplitter] = None, include_embeddings: bool = False, **kwargs: Any, ) -> None: """Initialize params.""" # need to set parameters before building index in base class. self.include_embeddings = include_embeddings self.max_triplets_per_chunk = max_triplets_per_chunk self.kg_triple_extract_template = ( kg_triple_extract_template or DEFAULT_KG_TRIPLET_EXTRACT_PROMPT ) # NOTE: Partially format keyword extract template here. self.kg_triple_extract_template = ( self.kg_triple_extract_template.partial_format( max_knowledge_triplets=self.max_triplets_per_chunk ) ) super().__init__( documents=documents, index_struct=index_struct, llm_predictor=llm_predictor, text_splitter=text_splitter, **kwargs, ) @classmethod def get_query_map(self) -> Dict[str, Type[BaseGPTIndexQuery]]: """Get query map.""" return { QueryMode.DEFAULT: GPTKGTableQuery, } def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]: """Extract keywords from text.""" response, _ = self._llm_predictor.predict( self.kg_triple_extract_template, text=text, ) return self._parse_triplet_response(response) @staticmethod def _parse_triplet_response(response: str) -> List[Tuple[str, str, str]]: knowledge_strs = response.strip().split("\n") results = [] for text in knowledge_strs: tokens = text[1:-1].split(",") if len(tokens) != 3: continue subj, pred, obj = tokens results.append((subj.strip(), pred.strip(), obj.strip())) return results def _build_fallback_text_splitter(self) -> TextSplitter: # if not specified, use "smart" text splitter to ensure chunks fit in prompt return self._prompt_helper.get_text_splitter_given_prompt( self.kg_triple_extract_template, 1 ) def _build_index_from_documents(self, documents: Sequence[BaseDocument]) -> KG: """Build the index from documents.""" # do simple concatenation index_struct = KG(table={}) for d in documents: nodes = self._get_nodes_from_document(d) for n in nodes: # set doc id node_id = get_new_id(set()) n.doc_id = node_id triplets = self._extract_triplets(n.get_text()) logging.debug(f"> Extracted triplets: {triplets}") for triplet in triplets: index_struct.upsert_triplet(triplet, n) if self.include_embeddings: for i, triplet in enumerate(triplets): self._embed_model.queue_text_for_embeddding( str(triplet), str(triplet) ) embed_outputs = self._embed_model.get_queued_text_embeddings() for (rel_text, rel_embed) in zip(*embed_outputs): index_struct.add_to_embedding_dict(rel_text, rel_embed) return index_struct def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None: """Insert a document.""" nodes = self._get_nodes_from_document(document) for n in nodes: # set doc id node_id = get_new_id(set()) n.doc_id = node_id triplets = self._extract_triplets(n.get_text()) logging.debug(f"Extracted triplets: {triplets}") for triplet in triplets: triplet_str = str(triplet) self._index_struct.upsert_triplet(triplet, n) if ( self.include_embeddings and triplet_str not in self._index_struct.embedding_dict ): rel_embedding = self._embed_model.get_text_embedding(triplet_str) self.index_struct.add_to_embedding_dict(triplet_str, rel_embedding) def _delete(self, doc_id: str, **delete_kwargs: Any) -> None: """Delete a document.""" raise NotImplementedError("Delete is not supported for KG index yet.") def _preprocess_query(self, mode: QueryMode, query_kwargs: Dict) -> None: """Set the default embedding mode during query based on current index.""" if ( len(self.index_struct.embedding_dict) > 0 and "embedding_mode" not in query_kwargs ): query_kwargs["embedding_mode"] = KGQueryMode.HYBRID def get_networkx_graph(self) -> Any: """Get networkx representation of the graph structure. NOTE: This function requires networkx to be installed. NOTE: This is a beta feature. """ try: import networkx as nx except ImportError: raise ImportError( "Please install networkx to visualize the graph: `pip install networkx`" ) g = nx.Graph() # add nodes for node_name in self.index_struct.table.keys(): g.add_node(node_name) # add edges rel_map = self.index_struct.rel_map for keyword in rel_map.keys(): for obj, rel in rel_map[keyword]: g.add_edge(keyword, obj, title=rel) return g