AbeerTrial's picture
Upload folder using huggingface_hub
8a58cf3
"""
Utility routines
"""
from collections.abc import Mapping
from copy import deepcopy
import json
import itertools
import re
import sys
import traceback
import warnings
from typing import Callable, TypeVar, Any
import jsonschema
import pandas as pd
import numpy as np
from altair.utils.schemapi import SchemaBase
if sys.version_info >= (3, 10):
from typing import ParamSpec
else:
from typing_extensions import ParamSpec
try:
from pandas.api.types import infer_dtype as _infer_dtype
except ImportError:
# Import for pandas < 0.20.0
from pandas.lib import infer_dtype as _infer_dtype # type: ignore[no-redef]
_V = TypeVar("_V")
_P = ParamSpec("_P")
def infer_dtype(value):
"""Infer the dtype of the value.
This is a compatibility function for pandas infer_dtype,
with skipna=False regardless of the pandas version.
"""
if not hasattr(infer_dtype, "_supports_skipna"):
try:
_infer_dtype([1], skipna=False)
except TypeError:
# pandas < 0.21.0 don't support skipna keyword
infer_dtype._supports_skipna = False
else:
infer_dtype._supports_skipna = True
if infer_dtype._supports_skipna:
return _infer_dtype(value, skipna=False)
else:
return _infer_dtype(value)
TYPECODE_MAP = {
"ordinal": "O",
"nominal": "N",
"quantitative": "Q",
"temporal": "T",
"geojson": "G",
}
INV_TYPECODE_MAP = {v: k for k, v in TYPECODE_MAP.items()}
# aggregates from vega-lite version 4.6.0
AGGREGATES = [
"argmax",
"argmin",
"average",
"count",
"distinct",
"max",
"mean",
"median",
"min",
"missing",
"product",
"q1",
"q3",
"ci0",
"ci1",
"stderr",
"stdev",
"stdevp",
"sum",
"valid",
"values",
"variance",
"variancep",
]
# window aggregates from vega-lite version 4.6.0
WINDOW_AGGREGATES = [
"row_number",
"rank",
"dense_rank",
"percent_rank",
"cume_dist",
"ntile",
"lag",
"lead",
"first_value",
"last_value",
"nth_value",
]
# timeUnits from vega-lite version 4.17.0
TIMEUNITS = [
"year",
"quarter",
"month",
"week",
"day",
"dayofyear",
"date",
"hours",
"minutes",
"seconds",
"milliseconds",
"yearquarter",
"yearquartermonth",
"yearmonth",
"yearmonthdate",
"yearmonthdatehours",
"yearmonthdatehoursminutes",
"yearmonthdatehoursminutesseconds",
"yearweek",
"yearweekday",
"yearweekdayhours",
"yearweekdayhoursminutes",
"yearweekdayhoursminutesseconds",
"yeardayofyear",
"quartermonth",
"monthdate",
"monthdatehours",
"monthdatehoursminutes",
"monthdatehoursminutesseconds",
"weekday",
"weeksdayhours",
"weekdayhoursminutes",
"weekdayhoursminutesseconds",
"dayhours",
"dayhoursminutes",
"dayhoursminutesseconds",
"hoursminutes",
"hoursminutesseconds",
"minutesseconds",
"secondsmilliseconds",
"utcyear",
"utcquarter",
"utcmonth",
"utcweek",
"utcday",
"utcdayofyear",
"utcdate",
"utchours",
"utcminutes",
"utcseconds",
"utcmilliseconds",
"utcyearquarter",
"utcyearquartermonth",
"utcyearmonth",
"utcyearmonthdate",
"utcyearmonthdatehours",
"utcyearmonthdatehoursminutes",
"utcyearmonthdatehoursminutesseconds",
"utcyearweek",
"utcyearweekday",
"utcyearweekdayhours",
"utcyearweekdayhoursminutes",
"utcyearweekdayhoursminutesseconds",
"utcyeardayofyear",
"utcquartermonth",
"utcmonthdate",
"utcmonthdatehours",
"utcmonthdatehoursminutes",
"utcmonthdatehoursminutesseconds",
"utcweekday",
"utcweeksdayhours",
"utcweekdayhoursminutes",
"utcweekdayhoursminutesseconds",
"utcdayhours",
"utcdayhoursminutes",
"utcdayhoursminutesseconds",
"utchoursminutes",
"utchoursminutesseconds",
"utcminutesseconds",
"utcsecondsmilliseconds",
]
def infer_vegalite_type(data):
"""
From an array-like input, infer the correct vega typecode
('ordinal', 'nominal', 'quantitative', or 'temporal')
Parameters
----------
data: Numpy array or Pandas Series
"""
# Otherwise, infer based on the dtype of the input
typ = infer_dtype(data)
if typ in [
"floating",
"mixed-integer-float",
"integer",
"mixed-integer",
"complex",
]:
return "quantitative"
elif typ == "categorical" and data.cat.ordered:
return ("ordinal", data.cat.categories.tolist())
elif typ in ["string", "bytes", "categorical", "boolean", "mixed", "unicode"]:
return "nominal"
elif typ in [
"datetime",
"datetime64",
"timedelta",
"timedelta64",
"date",
"time",
"period",
]:
return "temporal"
else:
warnings.warn(
"I don't know how to infer vegalite type from '{}'. "
"Defaulting to nominal.".format(typ),
stacklevel=1,
)
return "nominal"
def merge_props_geom(feat):
"""
Merge properties with geometry
* Overwrites 'type' and 'geometry' entries if existing
"""
geom = {k: feat[k] for k in ("type", "geometry")}
try:
feat["properties"].update(geom)
props_geom = feat["properties"]
except (AttributeError, KeyError):
# AttributeError when 'properties' equals None
# KeyError when 'properties' is non-existing
props_geom = geom
return props_geom
def sanitize_geo_interface(geo):
"""Santize a geo_interface to prepare it for serialization.
* Make a copy
* Convert type array or _Array to list
* Convert tuples to lists (using json.loads/dumps)
* Merge properties with geometry
"""
geo = deepcopy(geo)
# convert type _Array or array to list
for key in geo.keys():
if str(type(geo[key]).__name__).startswith(("_Array", "array")):
geo[key] = geo[key].tolist()
# convert (nested) tuples to lists
geo = json.loads(json.dumps(geo))
# sanitize features
if geo["type"] == "FeatureCollection":
geo = geo["features"]
if len(geo) > 0:
for idx, feat in enumerate(geo):
geo[idx] = merge_props_geom(feat)
elif geo["type"] == "Feature":
geo = merge_props_geom(geo)
else:
geo = {"type": "Feature", "geometry": geo}
return geo
def sanitize_dataframe(df): # noqa: C901
"""Sanitize a DataFrame to prepare it for serialization.
* Make a copy
* Convert RangeIndex columns to strings
* Raise ValueError if column names are not strings
* Raise ValueError if it has a hierarchical index.
* Convert categoricals to strings.
* Convert np.bool_ dtypes to Python bool objects
* Convert np.int dtypes to Python int objects
* Convert floats to objects and replace NaNs/infs with None.
* Convert DateTime dtypes into appropriate string representations
* Convert Nullable integers to objects and replace NaN with None
* Convert Nullable boolean to objects and replace NaN with None
* convert dedicated string column to objects and replace NaN with None
* Raise a ValueError for TimeDelta dtypes
"""
df = df.copy()
if isinstance(df.columns, pd.RangeIndex):
df.columns = df.columns.astype(str)
for col in df.columns:
if not isinstance(col, str):
raise ValueError(
"Dataframe contains invalid column name: {0!r}. "
"Column names must be strings".format(col)
)
if isinstance(df.index, pd.MultiIndex):
raise ValueError("Hierarchical indices not supported")
if isinstance(df.columns, pd.MultiIndex):
raise ValueError("Hierarchical indices not supported")
def to_list_if_array(val):
if isinstance(val, np.ndarray):
return val.tolist()
else:
return val
for col_name, dtype in df.dtypes.items():
if str(dtype) == "category":
# Work around bug in to_json for categorical types in older versions of pandas
# https://github.com/pydata/pandas/issues/10778
# https://github.com/altair-viz/altair/pull/2170
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif str(dtype) == "string":
# dedicated string datatype (since 1.0)
# https://pandas.pydata.org/pandas-docs/version/1.0.0/whatsnew/v1.0.0.html#dedicated-string-data-type
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif str(dtype) == "bool":
# convert numpy bools to objects; np.bool is not JSON serializable
df[col_name] = df[col_name].astype(object)
elif str(dtype) == "boolean":
# dedicated boolean datatype (since 1.0)
# https://pandas.io/docs/user_guide/boolean.html
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif str(dtype).startswith("datetime"):
# Convert datetimes to strings. This needs to be a full ISO string
# with time, which is why we cannot use ``col.astype(str)``.
# This is because Javascript parses date-only times in UTC, but
# parses full ISO-8601 dates as local time, and dates in Vega and
# Vega-Lite are displayed in local time by default.
# (see https://github.com/altair-viz/altair/issues/1027)
df[col_name] = (
df[col_name].apply(lambda x: x.isoformat()).replace("NaT", "")
)
elif str(dtype).startswith("timedelta"):
raise ValueError(
'Field "{col_name}" has type "{dtype}" which is '
"not supported by Altair. Please convert to "
"either a timestamp or a numerical value."
"".format(col_name=col_name, dtype=dtype)
)
elif str(dtype).startswith("geometry"):
# geopandas >=0.6.1 uses the dtype geometry. Continue here
# otherwise it will give an error on np.issubdtype(dtype, np.integer)
continue
elif str(dtype) in {
"Int8",
"Int16",
"Int32",
"Int64",
"UInt8",
"UInt16",
"UInt32",
"UInt64",
"Float32",
"Float64",
}: # nullable integer datatypes (since 24.0) and nullable float datatypes (since 1.2.0)
# https://pandas.pydata.org/pandas-docs/version/0.25/whatsnew/v0.24.0.html#optional-integer-na-support
col = df[col_name].astype(object)
df[col_name] = col.where(col.notnull(), None)
elif np.issubdtype(dtype, np.integer):
# convert integers to objects; np.int is not JSON serializable
df[col_name] = df[col_name].astype(object)
elif np.issubdtype(dtype, np.floating):
# For floats, convert to Python float: np.float is not JSON serializable
# Also convert NaN/inf values to null, as they are not JSON serializable
col = df[col_name]
bad_values = col.isnull() | np.isinf(col)
df[col_name] = col.astype(object).where(~bad_values, None)
elif dtype == object:
# Convert numpy arrays saved as objects to lists
# Arrays are not JSON serializable
col = df[col_name].apply(to_list_if_array, convert_dtype=False)
df[col_name] = col.where(col.notnull(), None)
return df
def parse_shorthand(
shorthand,
data=None,
parse_aggregates=True,
parse_window_ops=False,
parse_timeunits=True,
parse_types=True,
):
"""General tool to parse shorthand values
These are of the form:
- "col_name"
- "col_name:O"
- "average(col_name)"
- "average(col_name):O"
Optionally, a dataframe may be supplied, from which the type
will be inferred if not specified in the shorthand.
Parameters
----------
shorthand : dict or string
The shorthand representation to be parsed
data : DataFrame, optional
If specified and of type DataFrame, then use these values to infer the
column type if not provided by the shorthand.
parse_aggregates : boolean
If True (default), then parse aggregate functions within the shorthand.
parse_window_ops : boolean
If True then parse window operations within the shorthand (default:False)
parse_timeunits : boolean
If True (default), then parse timeUnits from within the shorthand
parse_types : boolean
If True (default), then parse typecodes within the shorthand
Returns
-------
attrs : dict
a dictionary of attributes extracted from the shorthand
Examples
--------
>>> data = pd.DataFrame({'foo': ['A', 'B', 'A', 'B'],
... 'bar': [1, 2, 3, 4]})
>>> parse_shorthand('name') == {'field': 'name'}
True
>>> parse_shorthand('name:Q') == {'field': 'name', 'type': 'quantitative'}
True
>>> parse_shorthand('average(col)') == {'aggregate': 'average', 'field': 'col'}
True
>>> parse_shorthand('foo:O') == {'field': 'foo', 'type': 'ordinal'}
True
>>> parse_shorthand('min(foo):Q') == {'aggregate': 'min', 'field': 'foo', 'type': 'quantitative'}
True
>>> parse_shorthand('month(col)') == {'field': 'col', 'timeUnit': 'month', 'type': 'temporal'}
True
>>> parse_shorthand('year(col):O') == {'field': 'col', 'timeUnit': 'year', 'type': 'ordinal'}
True
>>> parse_shorthand('foo', data) == {'field': 'foo', 'type': 'nominal'}
True
>>> parse_shorthand('bar', data) == {'field': 'bar', 'type': 'quantitative'}
True
>>> parse_shorthand('bar:O', data) == {'field': 'bar', 'type': 'ordinal'}
True
>>> parse_shorthand('sum(bar)', data) == {'aggregate': 'sum', 'field': 'bar', 'type': 'quantitative'}
True
>>> parse_shorthand('count()', data) == {'aggregate': 'count', 'type': 'quantitative'}
True
"""
if not shorthand:
return {}
valid_typecodes = list(TYPECODE_MAP) + list(INV_TYPECODE_MAP)
units = {
"field": "(?P<field>.*)",
"type": "(?P<type>{})".format("|".join(valid_typecodes)),
"agg_count": "(?P<aggregate>count)",
"op_count": "(?P<op>count)",
"aggregate": "(?P<aggregate>{})".format("|".join(AGGREGATES)),
"window_op": "(?P<op>{})".format("|".join(AGGREGATES + WINDOW_AGGREGATES)),
"timeUnit": "(?P<timeUnit>{})".format("|".join(TIMEUNITS)),
}
patterns = []
if parse_aggregates:
patterns.extend([r"{agg_count}\(\)"])
patterns.extend([r"{aggregate}\({field}\)"])
if parse_window_ops:
patterns.extend([r"{op_count}\(\)"])
patterns.extend([r"{window_op}\({field}\)"])
if parse_timeunits:
patterns.extend([r"{timeUnit}\({field}\)"])
patterns.extend([r"{field}"])
if parse_types:
patterns = list(itertools.chain(*((p + ":{type}", p) for p in patterns)))
regexps = (
re.compile(r"\A" + p.format(**units) + r"\Z", re.DOTALL) for p in patterns
)
# find matches depending on valid fields passed
if isinstance(shorthand, dict):
attrs = shorthand
else:
attrs = next(
exp.match(shorthand).groupdict() for exp in regexps if exp.match(shorthand)
)
# Handle short form of the type expression
if "type" in attrs:
attrs["type"] = INV_TYPECODE_MAP.get(attrs["type"], attrs["type"])
# counts are quantitative by default
if attrs == {"aggregate": "count"}:
attrs["type"] = "quantitative"
# times are temporal by default
if "timeUnit" in attrs and "type" not in attrs:
attrs["type"] = "temporal"
# if data is specified and type is not, infer type from data
if isinstance(data, pd.DataFrame) and "type" not in attrs:
# Remove escape sequences so that types can be inferred for columns with special characters
if "field" in attrs and attrs["field"].replace("\\", "") in data.columns:
attrs["type"] = infer_vegalite_type(data[attrs["field"].replace("\\", "")])
# ordered categorical dataframe columns return the type and sort order as a tuple
if isinstance(attrs["type"], tuple):
attrs["sort"] = attrs["type"][1]
attrs["type"] = attrs["type"][0]
# If an unescaped colon is still present, it's often due to an incorrect data type specification
# but could also be due to using a column name with ":" in it.
if (
"field" in attrs
and ":" in attrs["field"]
and attrs["field"][attrs["field"].rfind(":") - 1] != "\\"
):
raise ValueError(
'"{}" '.format(attrs["field"].split(":")[-1])
+ "is not one of the valid encoding data types: {}.".format(
", ".join(TYPECODE_MAP.values())
)
+ "\nFor more details, see https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types. "
+ "If you are trying to use a column name that contains a colon, "
+ 'prefix it with a backslash; for example "column\\:name" instead of "column:name".'
)
return attrs
def use_signature(Obj: Callable[_P, Any]):
"""Apply call signature and documentation of Obj to the decorated method"""
def decorate(f: Callable[..., _V]) -> Callable[_P, _V]:
# call-signature of f is exposed via __wrapped__.
# we want it to mimic Obj.__init__
f.__wrapped__ = Obj.__init__ # type: ignore
f._uses_signature = Obj # type: ignore
# Supplement the docstring of f with information from Obj
if Obj.__doc__:
# Patch in a reference to the class this docstring is copied from,
# to generate a hyperlink.
doclines = Obj.__doc__.splitlines()
doclines[0] = f"Refer to :class:`{Obj.__name__}`"
if f.__doc__:
doc = f.__doc__ + "\n".join(doclines[1:])
else:
doc = "\n".join(doclines)
try:
f.__doc__ = doc
except AttributeError:
# __doc__ is not modifiable for classes in Python < 3.3
pass
return f
return decorate
def update_nested(original, update, copy=False):
"""Update nested dictionaries
Parameters
----------
original : dict
the original (nested) dictionary, which will be updated in-place
update : dict
the nested dictionary of updates
copy : bool, default False
if True, then copy the original dictionary rather than modifying it
Returns
-------
original : dict
a reference to the (modified) original dict
Examples
--------
>>> original = {'x': {'b': 2, 'c': 4}}
>>> update = {'x': {'b': 5, 'd': 6}, 'y': 40}
>>> update_nested(original, update) # doctest: +SKIP
{'x': {'b': 5, 'c': 4, 'd': 6}, 'y': 40}
>>> original # doctest: +SKIP
{'x': {'b': 5, 'c': 4, 'd': 6}, 'y': 40}
"""
if copy:
original = deepcopy(original)
for key, val in update.items():
if isinstance(val, Mapping):
orig_val = original.get(key, {})
if isinstance(orig_val, Mapping):
original[key] = update_nested(orig_val, val)
else:
original[key] = val
else:
original[key] = val
return original
def display_traceback(in_ipython=True):
exc_info = sys.exc_info()
if in_ipython:
from IPython.core.getipython import get_ipython
ip = get_ipython()
else:
ip = None
if ip is not None:
ip.showtraceback(exc_info)
else:
traceback.print_exception(*exc_info)
def infer_encoding_types(args, kwargs, channels):
"""Infer typed keyword arguments for args and kwargs
Parameters
----------
args : tuple
List of function args
kwargs : dict
Dict of function kwargs
channels : module
The module containing all altair encoding channel classes.
Returns
-------
kwargs : dict
All args and kwargs in a single dict, with keys and types
based on the channels mapping.
"""
# Construct a dictionary of channel type to encoding name
# TODO: cache this somehow?
channel_objs = (getattr(channels, name) for name in dir(channels))
channel_objs = (
c for c in channel_objs if isinstance(c, type) and issubclass(c, SchemaBase)
)
channel_to_name = {c: c._encoding_name for c in channel_objs}
name_to_channel = {}
for chan, name in channel_to_name.items():
chans = name_to_channel.setdefault(name, {})
if chan.__name__.endswith("Datum"):
key = "datum"
elif chan.__name__.endswith("Value"):
key = "value"
else:
key = "field"
chans[key] = chan
# First use the mapping to convert args to kwargs based on their types.
for arg in args:
if isinstance(arg, (list, tuple)) and len(arg) > 0:
type_ = type(arg[0])
else:
type_ = type(arg)
encoding = channel_to_name.get(type_, None)
if encoding is None:
raise NotImplementedError("positional of type {}" "".format(type_))
if encoding in kwargs:
raise ValueError("encoding {} specified twice.".format(encoding))
kwargs[encoding] = arg
def _wrap_in_channel_class(obj, encoding):
if isinstance(obj, SchemaBase):
return obj
if isinstance(obj, str):
obj = {"shorthand": obj}
if isinstance(obj, (list, tuple)):
return [_wrap_in_channel_class(subobj, encoding) for subobj in obj]
if encoding not in name_to_channel:
warnings.warn(
"Unrecognized encoding channel '{}'".format(encoding), stacklevel=1
)
return obj
classes = name_to_channel[encoding]
cls = classes["value"] if "value" in obj else classes["field"]
try:
# Don't force validation here; some objects won't be valid until
# they're created in the context of a chart.
return cls.from_dict(obj, validate=False)
except jsonschema.ValidationError:
# our attempts at finding the correct class have failed
return obj
return {
encoding: _wrap_in_channel_class(obj, encoding)
for encoding, obj in kwargs.items()
}