File size: 9,704 Bytes
8a58cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""Set of default prompts."""

from gpt_index.prompts.prompts import (
    KeywordExtractPrompt,
    KnowledgeGraphPrompt,
    QueryKeywordExtractPrompt,
    QuestionAnswerPrompt,
    RefinePrompt,
    RefineTableContextPrompt,
    SchemaExtractPrompt,
    SimpleInputPrompt,
    SummaryPrompt,
    TableContextPrompt,
    TextToSQLPrompt,
    TreeInsertPrompt,
    TreeSelectMultiplePrompt,
    TreeSelectPrompt,
)

############################################
# Tree
############################################

DEFAULT_SUMMARY_PROMPT_TMPL = (
    "Write a summary of the following. Try to use only the "
    "information provided. "
    "Try to include as many key details as possible.\n"
    "\n"
    "\n"
    "{context_str}\n"
    "\n"
    "\n"
    'SUMMARY:"""\n'
)

DEFAULT_SUMMARY_PROMPT = SummaryPrompt(DEFAULT_SUMMARY_PROMPT_TMPL)

# insert prompts
DEFAULT_INSERT_PROMPT_TMPL = (
    "Context information is below. It is provided in a numbered list "
    "(1 to {num_chunks}),"
    "where each item in the list corresponds to a summary.\n"
    "---------------------\n"
    "{context_list}"
    "---------------------\n"
    "Given the context information, here is a new piece of "
    "information: {new_chunk_text}\n"
    "Answer with the number corresponding to the summary that should be updated. "
    "The answer should be the number corresponding to the "
    "summary that is most relevant to the question.\n"
)
DEFAULT_INSERT_PROMPT = TreeInsertPrompt(DEFAULT_INSERT_PROMPT_TMPL)


# # single choice
DEFAULT_QUERY_PROMPT_TMPL = (
    "Some choices are given below. It is provided in a numbered list "
    "(1 to {num_chunks}),"
    "where each item in the list corresponds to a summary.\n"
    "---------------------\n"
    "{context_list}"
    "\n---------------------\n"
    "Using only the choices above and not prior knowledge, return "
    "the choice that is most relevant to the question: '{query_str}'\n"
    "Provide choice in the following format: 'ANSWER: <number>' and explain why "
    "this summary was selected in relation to the question.\n"
)
DEFAULT_QUERY_PROMPT = TreeSelectPrompt(DEFAULT_QUERY_PROMPT_TMPL)

# multiple choice
DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL = (
    "Some choices are given below. It is provided in a numbered "
    "list (1 to {num_chunks}), "
    "where each item in the list corresponds to a summary.\n"
    "---------------------\n"
    "{context_list}"
    "\n---------------------\n"
    "Using only the choices above and not prior knowledge, return the top choices "
    "(no more than {branching_factor}, ranked by most relevant to least) that "
    "are most relevant to the question: '{query_str}'\n"
    "Provide choices in the following format: 'ANSWER: <numbers>' and explain why "
    "these summaries were selected in relation to the question.\n"
)
DEFAULT_QUERY_PROMPT_MULTIPLE = TreeSelectMultiplePrompt(
    DEFAULT_QUERY_PROMPT_MULTIPLE_TMPL
)


DEFAULT_REFINE_PROMPT_TMPL = (
    "The original question is as follows: {query_str}\n"
    "We have provided an existing answer: {existing_answer}\n"
    "We have the opportunity to refine the existing answer "
    "(only if needed) with some more context below.\n"
    "------------\n"
    "{context_msg}\n"
    "------------\n"
    "Given the new context, refine the original answer to better "
    "answer the question. "
    "If the context isn't useful, return the original answer."
)
DEFAULT_REFINE_PROMPT = RefinePrompt(DEFAULT_REFINE_PROMPT_TMPL)


DEFAULT_TEXT_QA_PROMPT_TMPL = (
    "Context information is below. \n"
    "---------------------\n"
    "{context_str}"
    "\n---------------------\n"
    "Given the context information and not prior knowledge, "
    "answer the question: {query_str}\n"
)
DEFAULT_TEXT_QA_PROMPT = QuestionAnswerPrompt(DEFAULT_TEXT_QA_PROMPT_TMPL)


############################################
# Keyword Table
############################################

DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL = (
    "Some text is provided below. Given the text, extract up to {max_keywords} "
    "keywords from the text. Avoid stopwords."
    "---------------------\n"
    "{text}\n"
    "---------------------\n"
    "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n"
)
DEFAULT_KEYWORD_EXTRACT_TEMPLATE = KeywordExtractPrompt(
    DEFAULT_KEYWORD_EXTRACT_TEMPLATE_TMPL
)


# NOTE: the keyword extraction for queries can be the same as
# the one used to build the index, but here we tune it to see if performance is better.
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL = (
    "A question is provided below. Given the question, extract up to {max_keywords} "
    "keywords from the text. Focus on extracting the keywords that we can use "
    "to best lookup answers to the question. Avoid stopwords.\n"
    "---------------------\n"
    "{question}\n"
    "---------------------\n"
    "Provide keywords in the following comma-separated format: 'KEYWORDS: <keywords>'\n"
)
DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE = QueryKeywordExtractPrompt(
    DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE_TMPL
)


############################################
# Structured Store
############################################

DEFAULT_SCHEMA_EXTRACT_TMPL = (
    "We wish to extract relevant fields from an unstructured text chunk into "
    "a structured schema. We first provide the unstructured text, and then "
    "we provide the schema that we wish to extract. "
    "-----------text-----------\n"
    "{text}\n"
    "-----------schema-----------\n"
    "{schema}\n"
    "---------------------\n"
    "Given the text and schema, extract the relevant fields from the text in "
    "the following format: "
    "field1: <value>\nfield2: <value>\n...\n\n"
    "If a field is not present in the text, don't include it in the output."
    "If no fields are present in the text, return a blank string.\n"
    "Fields: "
)
DEFAULT_SCHEMA_EXTRACT_PROMPT = SchemaExtractPrompt(DEFAULT_SCHEMA_EXTRACT_TMPL)

# NOTE: taken from langchain and adapted
# https://tinyurl.com/b772sd77
DEFAULT_TEXT_TO_SQL_TMPL = (
    "Given an input question, first create a syntactically correct SQL query "
    "to run, then look at the results of the query and return the answer.\n"
    "Use the following format:\n"
    'Question: "Question here"\n'
    'SQLQuery: "SQL Query to run"\n'
    "The following is a schema of the table:\n"
    "---------------------\n"
    "{schema}\n"
    "---------------------\n"
    "Question: {query_str}\n"
    "SQLQuery: "
)

DEFAULT_TEXT_TO_SQL_PROMPT = TextToSQLPrompt(DEFAULT_TEXT_TO_SQL_TMPL)


# NOTE: by partially filling schema, we can reduce to a QuestionAnswer prompt
# that we can feed to ur table
DEFAULT_TABLE_CONTEXT_TMPL = (
    "We have provided a table schema below. "
    "---------------------\n"
    "{schema}\n"
    "---------------------\n"
    "We have also provided context information below. "
    "{context_str}\n"
    "---------------------\n"
    "Given the context information and the table schema, "
    "give a response to the following task: {query_str}"
)

DEFAULT_TABLE_CONTEXT_QUERY = (
    "Provide a high-level description of the table, "
    "as well as a description of each column in the table. "
    "Provide answers in the following format:\n"
    "TableDescription: <description>\n"
    "Column1Description: <description>\n"
    "Column2Description: <description>\n"
    "...\n\n"
)

DEFAULT_TABLE_CONTEXT_PROMPT = TableContextPrompt(DEFAULT_TABLE_CONTEXT_TMPL)

# NOTE: by partially filling schema, we can reduce to a RefinePrompt
# that we can feed to ur table
DEFAULT_REFINE_TABLE_CONTEXT_TMPL = (
    "We have provided a table schema below. "
    "---------------------\n"
    "{schema}\n"
    "---------------------\n"
    "We have also provided some context information below. "
    "{context_msg}\n"
    "---------------------\n"
    "Given the context information and the table schema, "
    "give a response to the following task: {query_str}\n"
    "We have provided an existing answer: {existing_answer}\n"
    "Given the new context, refine the original answer to better "
    "answer the question. "
    "If the context isn't useful, return the original answer."
)
DEFAULT_REFINE_TABLE_CONTEXT_PROMPT = RefineTableContextPrompt(
    DEFAULT_REFINE_TABLE_CONTEXT_TMPL
)


############################################
# Knowledge-Graph Table
############################################

DEFAULT_KG_TRIPLET_EXTRACT_TMPL = (
    "Some text is provided below. Given the text, extract up to "
    "{max_knowledge_triplets} "
    "knowledge triplets in the form of (subject, predicate, object). Avoid stopwords.\n"
    "---------------------\n"
    "Example:"
    "Text: Alice is Bob's mother."
    "Triplets:\n(Alice, is mother of, Bob)\n"
    "Text: Philz is a coffee shop founded in Berkeley in 1982.\n"
    "Triplets:\n"
    "(Philz, is, coffee shop)\n"
    "(Philz, founded in, Berkeley)\n"
    "(Philz, founded in, 1982)\n"
    "---------------------\n"
    "Text: {text}\n"
    "Triplets:\n"
)
DEFAULT_KG_TRIPLET_EXTRACT_PROMPT = KnowledgeGraphPrompt(
    DEFAULT_KG_TRIPLET_EXTRACT_TMPL
)

############################################
# HYDE
##############################################

HYDE_TMPL = (
    "Please write a passage to answer the question\n"
    "Try to include as many key details as possible.\n"
    "\n"
    "\n"
    "{context_str}\n"
    "\n"
    "\n"
    'Passage:"""\n'
)

DEFAULT_HYDE_PROMPT = SummaryPrompt(HYDE_TMPL)


############################################
# Simple Input
############################################

DEFAULT_SIMPLE_INPUT_TMPL = "{query_str}"
DEFAULT_SIMPLE_INPUT_PROMPT = SimpleInputPrompt(DEFAULT_SIMPLE_INPUT_TMPL)