File size: 10,628 Bytes
8a58cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2006, Mathieu Fenniak
# Copyright (c) 2007, Ashish Kulkarni <[email protected]>
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * The name of the author may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

"""Anything related to encryption / decryption."""

import struct
from hashlib import md5
from typing import Tuple, Union

from ._utils import b_, ord_, str_
from .generic import ByteStringObject

try:
    from typing import Literal  # type: ignore[attr-defined]
except ImportError:
    # PEP 586 introduced typing.Literal with Python 3.8
    # For older Python versions, the backport typing_extensions is necessary:
    from typing_extensions import Literal  # type: ignore[misc]

# ref: pdf1.8 spec section 3.5.2 algorithm 3.2
_encryption_padding = (
    b"\x28\xbf\x4e\x5e\x4e\x75\x8a\x41\x64\x00\x4e\x56"
    b"\xff\xfa\x01\x08\x2e\x2e\x00\xb6\xd0\x68\x3e\x80\x2f\x0c"
    b"\xa9\xfe\x64\x53\x69\x7a"
)


def _alg32(
    password: str,
    rev: Literal[2, 3, 4],
    keylen: int,
    owner_entry: ByteStringObject,
    p_entry: int,
    id1_entry: ByteStringObject,
    metadata_encrypt: bool = True,
) -> bytes:
    """
    Implementation of algorithm 3.2 of the PDF standard security handler.

    See section 3.5.2 of the PDF 1.6 reference.
    """
    # 1. Pad or truncate the password string to exactly 32 bytes.  If the
    # password string is more than 32 bytes long, use only its first 32 bytes;
    # if it is less than 32 bytes long, pad it by appending the required number
    # of additional bytes from the beginning of the padding string
    # (_encryption_padding).
    password_bytes = b_((str_(password) + str_(_encryption_padding))[:32])
    # 2. Initialize the MD5 hash function and pass the result of step 1 as
    # input to this function.
    m = md5(password_bytes)
    # 3. Pass the value of the encryption dictionary's /O entry to the MD5 hash
    # function.
    m.update(owner_entry.original_bytes)
    # 4. Treat the value of the /P entry as an unsigned 4-byte integer and pass
    # these bytes to the MD5 hash function, low-order byte first.
    p_entry_bytes = struct.pack("<i", p_entry)
    m.update(p_entry_bytes)
    # 5. Pass the first element of the file's file identifier array to the MD5
    # hash function.
    m.update(id1_entry.original_bytes)
    # 6. (Revision 3 or greater) If document metadata is not being encrypted,
    # pass 4 bytes with the value 0xFFFFFFFF to the MD5 hash function.
    if rev >= 3 and not metadata_encrypt:
        m.update(b"\xff\xff\xff\xff")
    # 7. Finish the hash.
    md5_hash = m.digest()
    # 8. (Revision 3 or greater) Do the following 50 times: Take the output
    # from the previous MD5 hash and pass the first n bytes of the output as
    # input into a new MD5 hash, where n is the number of bytes of the
    # encryption key as defined by the value of the encryption dictionary's
    # /Length entry.
    if rev >= 3:
        for _ in range(50):
            md5_hash = md5(md5_hash[:keylen]).digest()
    # 9. Set the encryption key to the first n bytes of the output from the
    # final MD5 hash, where n is always 5 for revision 2 but, for revision 3 or
    # greater, depends on the value of the encryption dictionary's /Length
    # entry.
    return md5_hash[:keylen]


def _alg33(
    owner_password: str, user_password: str, rev: Literal[2, 3, 4], keylen: int
) -> bytes:
    """
    Implementation of algorithm 3.3 of the PDF standard security handler,
    section 3.5.2 of the PDF 1.6 reference.
    """
    # steps 1 - 4
    key = _alg33_1(owner_password, rev, keylen)
    # 5. Pad or truncate the user password string as described in step 1 of
    # algorithm 3.2.
    user_password_bytes = b_((user_password + str_(_encryption_padding))[:32])
    # 6. Encrypt the result of step 5, using an RC4 encryption function with
    # the encryption key obtained in step 4.
    val = RC4_encrypt(key, user_password_bytes)
    # 7. (Revision 3 or greater) Do the following 19 times: Take the output
    # from the previous invocation of the RC4 function and pass it as input to
    # a new invocation of the function; use an encryption key generated by
    # taking each byte of the encryption key obtained in step 4 and performing
    # an XOR operation between that byte and the single-byte value of the
    # iteration counter (from 1 to 19).
    if rev >= 3:
        for i in range(1, 20):
            new_key = ""
            for key_char in key:
                new_key += chr(ord_(key_char) ^ i)
            val = RC4_encrypt(new_key, val)
    # 8. Store the output from the final invocation of the RC4 as the value of
    # the /O entry in the encryption dictionary.
    return val


def _alg33_1(password: str, rev: Literal[2, 3, 4], keylen: int) -> bytes:
    """Steps 1-4 of algorithm 3.3"""
    # 1. Pad or truncate the owner password string as described in step 1 of
    # algorithm 3.2.  If there is no owner password, use the user password
    # instead.
    password_bytes = b_((password + str_(_encryption_padding))[:32])
    # 2. Initialize the MD5 hash function and pass the result of step 1 as
    # input to this function.
    m = md5(password_bytes)
    # 3. (Revision 3 or greater) Do the following 50 times: Take the output
    # from the previous MD5 hash and pass it as input into a new MD5 hash.
    md5_hash = m.digest()
    if rev >= 3:
        for _ in range(50):
            md5_hash = md5(md5_hash).digest()
    # 4. Create an RC4 encryption key using the first n bytes of the output
    # from the final MD5 hash, where n is always 5 for revision 2 but, for
    # revision 3 or greater, depends on the value of the encryption
    # dictionary's /Length entry.
    key = md5_hash[:keylen]
    return key


def _alg34(
    password: str,
    owner_entry: ByteStringObject,
    p_entry: int,
    id1_entry: ByteStringObject,
) -> Tuple[bytes, bytes]:
    """
    Implementation of algorithm 3.4 of the PDF standard security handler.

    See section 3.5.2 of the PDF 1.6 reference.
    """
    # 1. Create an encryption key based on the user password string, as
    # described in algorithm 3.2.
    rev: Literal[2] = 2
    keylen = 5
    key = _alg32(password, rev, keylen, owner_entry, p_entry, id1_entry)
    # 2. Encrypt the 32-byte padding string shown in step 1 of algorithm 3.2,
    # using an RC4 encryption function with the encryption key from the
    # preceding step.
    U = RC4_encrypt(key, _encryption_padding)
    # 3. Store the result of step 2 as the value of the /U entry in the
    # encryption dictionary.
    return U, key


def _alg35(
    password: str,
    rev: Literal[2, 3, 4],
    keylen: int,
    owner_entry: ByteStringObject,
    p_entry: int,
    id1_entry: ByteStringObject,
    metadata_encrypt: bool,
) -> Tuple[bytes, bytes]:
    """
    Implementation of algorithm 3.4 of the PDF standard security handler.

    See section 3.5.2 of the PDF 1.6 reference.
    """
    # 1. Create an encryption key based on the user password string, as
    # described in Algorithm 3.2.
    key = _alg32(password, rev, keylen, owner_entry, p_entry, id1_entry)
    # 2. Initialize the MD5 hash function and pass the 32-byte padding string
    # shown in step 1 of Algorithm 3.2 as input to this function.
    m = md5()
    m.update(_encryption_padding)
    # 3. Pass the first element of the file's file identifier array (the value
    # of the ID entry in the document's trailer dictionary; see Table 3.13 on
    # page 73) to the hash function and finish the hash.  (See implementation
    # note 25 in Appendix H.)
    m.update(id1_entry.original_bytes)
    md5_hash = m.digest()
    # 4. Encrypt the 16-byte result of the hash, using an RC4 encryption
    # function with the encryption key from step 1.
    val = RC4_encrypt(key, md5_hash)
    # 5. Do the following 19 times: Take the output from the previous
    # invocation of the RC4 function and pass it as input to a new invocation
    # of the function; use an encryption key generated by taking each byte of
    # the original encryption key (obtained in step 2) and performing an XOR
    # operation between that byte and the single-byte value of the iteration
    # counter (from 1 to 19).
    for i in range(1, 20):
        new_key = b""
        for k in key:
            new_key += b_(chr(ord_(k) ^ i))
        val = RC4_encrypt(new_key, val)
    # 6. Append 16 bytes of arbitrary padding to the output from the final
    # invocation of the RC4 function and store the 32-byte result as the value
    # of the U entry in the encryption dictionary.
    # (implementer note: I don't know what "arbitrary padding" is supposed to
    # mean, so I have used null bytes.  This seems to match a few other
    # people's implementations)
    return val + (b"\x00" * 16), key


def RC4_encrypt(key: Union[str, bytes], plaintext: bytes) -> bytes:  # TODO
    S = list(range(256))
    j = 0
    for i in range(256):
        j = (j + S[i] + ord_(key[i % len(key)])) % 256
        S[i], S[j] = S[j], S[i]
    i, j = 0, 0
    retval = []
    for plaintext_char in plaintext:
        i = (i + 1) % 256
        j = (j + S[i]) % 256
        S[i], S[j] = S[j], S[i]
        t = S[(S[i] + S[j]) % 256]
        retval.append(b_(chr(ord_(plaintext_char) ^ t)))
    return b"".join(retval)