AbeShinzo0708's picture
Upload 83 files
d232606 verified
raw
history blame
4.27 kB
import argparse
from concurrent.futures import ThreadPoolExecutor
import warnings
import numpy as np
import torch
from tqdm import tqdm
import utils
from common.log import logger
from common.stdout_wrapper import SAFE_STDOUT
from config import config
warnings.filterwarnings("ignore", category=UserWarning)
from pyannote.audio import Inference, Model
model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM")
inference = Inference(model, window="whole")
device = torch.device(config.style_gen_config.device)
inference.to(device)
class NaNValueError(ValueError):
"""カスタム例外クラス。NaN値が見つかった場合に使用されます。"""
pass
# 推論時にインポートするために短いが関数を書く
def get_style_vector(wav_path):
return inference(wav_path)
def save_style_vector(wav_path):
try:
style_vec = get_style_vector(wav_path)
except Exception as e:
print("\n")
logger.error(f"Error occurred with file: {wav_path}, Details:\n{e}\n")
raise
# 値にNaNが含まれていると悪影響なのでチェックする
if np.isnan(style_vec).any():
print("\n")
logger.warning(f"NaN value found in style vector: {wav_path}")
raise NaNValueError(f"NaN value found in style vector: {wav_path}")
np.save(f"{wav_path}.npy", style_vec) # `test.wav` -> `test.wav.npy`
def process_line(line):
wavname = line.split("|")[0]
try:
save_style_vector(wavname)
return line, None
except NaNValueError:
return line, "nan_error"
def save_average_style_vector(style_vectors, filename="style_vectors.npy"):
average_vector = np.mean(style_vectors, axis=0)
np.save(filename, average_vector)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", type=str, default=config.style_gen_config.config_path
)
parser.add_argument(
"--num_processes", type=int, default=config.style_gen_config.num_processes
)
args, _ = parser.parse_known_args()
config_path = args.config
num_processes = args.num_processes
hps = utils.get_hparams_from_file(config_path)
device = config.style_gen_config.device
training_lines = []
with open(hps.data.training_files, encoding="utf-8") as f:
training_lines.extend(f.readlines())
with ThreadPoolExecutor(max_workers=num_processes) as executor:
training_results = list(
tqdm(
executor.map(process_line, training_lines),
total=len(training_lines),
file=SAFE_STDOUT,
)
)
ok_training_lines = [line for line, error in training_results if error is None]
nan_training_lines = [
line for line, error in training_results if error == "nan_error"
]
if nan_training_lines:
nan_files = [line.split("|")[0] for line in nan_training_lines]
logger.warning(
f"Found NaN value in {len(nan_training_lines)} files: {nan_files}, so they will be deleted from training data."
)
val_lines = []
with open(hps.data.validation_files, encoding="utf-8") as f:
val_lines.extend(f.readlines())
with ThreadPoolExecutor(max_workers=num_processes) as executor:
val_results = list(
tqdm(
executor.map(process_line, val_lines),
total=len(val_lines),
file=SAFE_STDOUT,
)
)
ok_val_lines = [line for line, error in val_results if error is None]
nan_val_lines = [line for line, error in val_results if error == "nan_error"]
if nan_val_lines:
nan_files = [line.split("|")[0] for line in nan_val_lines]
logger.warning(
f"Found NaN value in {len(nan_val_lines)} files: {nan_files}, so they will be deleted from validation data."
)
with open(hps.data.training_files, "w", encoding="utf-8") as f:
f.writelines(ok_training_lines)
with open(hps.data.validation_files, "w", encoding="utf-8") as f:
f.writelines(ok_val_lines)
ok_num = len(ok_training_lines) + len(ok_val_lines)
logger.info(f"Finished generating style vectors! total: {ok_num} npy files.")