|
import argparse |
|
from concurrent.futures import ThreadPoolExecutor |
|
import warnings |
|
|
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
import utils |
|
from common.log import logger |
|
from common.stdout_wrapper import SAFE_STDOUT |
|
from config import config |
|
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
from pyannote.audio import Inference, Model |
|
|
|
model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM") |
|
inference = Inference(model, window="whole") |
|
device = torch.device(config.style_gen_config.device) |
|
inference.to(device) |
|
|
|
|
|
class NaNValueError(ValueError): |
|
"""カスタム例外クラス。NaN値が見つかった場合に使用されます。""" |
|
|
|
pass |
|
|
|
|
|
|
|
def get_style_vector(wav_path): |
|
return inference(wav_path) |
|
|
|
|
|
def save_style_vector(wav_path): |
|
try: |
|
style_vec = get_style_vector(wav_path) |
|
except Exception as e: |
|
print("\n") |
|
logger.error(f"Error occurred with file: {wav_path}, Details:\n{e}\n") |
|
raise |
|
|
|
if np.isnan(style_vec).any(): |
|
print("\n") |
|
logger.warning(f"NaN value found in style vector: {wav_path}") |
|
raise NaNValueError(f"NaN value found in style vector: {wav_path}") |
|
np.save(f"{wav_path}.npy", style_vec) |
|
|
|
|
|
def process_line(line): |
|
wavname = line.split("|")[0] |
|
try: |
|
save_style_vector(wavname) |
|
return line, None |
|
except NaNValueError: |
|
return line, "nan_error" |
|
|
|
|
|
def save_average_style_vector(style_vectors, filename="style_vectors.npy"): |
|
average_vector = np.mean(style_vectors, axis=0) |
|
np.save(filename, average_vector) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-c", "--config", type=str, default=config.style_gen_config.config_path |
|
) |
|
parser.add_argument( |
|
"--num_processes", type=int, default=config.style_gen_config.num_processes |
|
) |
|
args, _ = parser.parse_known_args() |
|
config_path = args.config |
|
num_processes = args.num_processes |
|
|
|
hps = utils.get_hparams_from_file(config_path) |
|
|
|
device = config.style_gen_config.device |
|
|
|
training_lines = [] |
|
with open(hps.data.training_files, encoding="utf-8") as f: |
|
training_lines.extend(f.readlines()) |
|
with ThreadPoolExecutor(max_workers=num_processes) as executor: |
|
training_results = list( |
|
tqdm( |
|
executor.map(process_line, training_lines), |
|
total=len(training_lines), |
|
file=SAFE_STDOUT, |
|
) |
|
) |
|
ok_training_lines = [line for line, error in training_results if error is None] |
|
nan_training_lines = [ |
|
line for line, error in training_results if error == "nan_error" |
|
] |
|
if nan_training_lines: |
|
nan_files = [line.split("|")[0] for line in nan_training_lines] |
|
logger.warning( |
|
f"Found NaN value in {len(nan_training_lines)} files: {nan_files}, so they will be deleted from training data." |
|
) |
|
|
|
val_lines = [] |
|
with open(hps.data.validation_files, encoding="utf-8") as f: |
|
val_lines.extend(f.readlines()) |
|
|
|
with ThreadPoolExecutor(max_workers=num_processes) as executor: |
|
val_results = list( |
|
tqdm( |
|
executor.map(process_line, val_lines), |
|
total=len(val_lines), |
|
file=SAFE_STDOUT, |
|
) |
|
) |
|
ok_val_lines = [line for line, error in val_results if error is None] |
|
nan_val_lines = [line for line, error in val_results if error == "nan_error"] |
|
if nan_val_lines: |
|
nan_files = [line.split("|")[0] for line in nan_val_lines] |
|
logger.warning( |
|
f"Found NaN value in {len(nan_val_lines)} files: {nan_files}, so they will be deleted from validation data." |
|
) |
|
|
|
with open(hps.data.training_files, "w", encoding="utf-8") as f: |
|
f.writelines(ok_training_lines) |
|
|
|
with open(hps.data.validation_files, "w", encoding="utf-8") as f: |
|
f.writelines(ok_val_lines) |
|
|
|
ok_num = len(ok_training_lines) + len(ok_val_lines) |
|
|
|
logger.info(f"Finished generating style vectors! total: {ok_num} npy files.") |
|
|