|
import json |
|
import os |
|
import sys |
|
from collections import defaultdict |
|
from random import shuffle |
|
from typing import Optional |
|
|
|
import click |
|
from tqdm import tqdm |
|
|
|
from config import config |
|
from text.cleaner import clean_text |
|
|
|
preprocess_text_config = config.preprocess_text_config |
|
|
|
|
|
@click.command() |
|
@click.option( |
|
"--transcription-path", |
|
default=preprocess_text_config.transcription_path, |
|
type=click.Path(exists=True, file_okay=True, dir_okay=False), |
|
) |
|
@click.option("--cleaned-path", default=preprocess_text_config.cleaned_path) |
|
@click.option("--train-path", default=preprocess_text_config.train_path) |
|
@click.option("--val-path", default=preprocess_text_config.val_path) |
|
@click.option( |
|
"--config-path", |
|
default=preprocess_text_config.config_path, |
|
type=click.Path(exists=True, file_okay=True, dir_okay=False), |
|
) |
|
@click.option("--val-per-lang", default=preprocess_text_config.val_per_lang) |
|
@click.option("--max-val-total", default=preprocess_text_config.max_val_total) |
|
@click.option("--clean/--no-clean", default=preprocess_text_config.clean) |
|
@click.option("-y", "--yml_config") |
|
def preprocess( |
|
transcription_path: str, |
|
cleaned_path: Optional[str], |
|
train_path: str, |
|
val_path: str, |
|
config_path: str, |
|
val_per_lang: int, |
|
max_val_total: int, |
|
clean: bool, |
|
yml_config: str, |
|
): |
|
if cleaned_path == "" or cleaned_path is None: |
|
cleaned_path = transcription_path + ".cleaned" |
|
|
|
if clean: |
|
with open(cleaned_path, "w", encoding="utf-8") as out_file: |
|
with open(transcription_path, "r", encoding="utf-8") as trans_file: |
|
lines = trans_file.readlines() |
|
|
|
if len(lines) != 0: |
|
for line in tqdm(lines, file=sys.stdout): |
|
try: |
|
utt, spk, language, text = line.strip().split("|") |
|
norm_text, phones, tones, word2ph = clean_text( |
|
text, language |
|
) |
|
out_file.write( |
|
"{}|{}|{}|{}|{}|{}|{}\n".format( |
|
utt, |
|
spk, |
|
language, |
|
norm_text, |
|
" ".join(phones), |
|
" ".join([str(i) for i in tones]), |
|
" ".join([str(i) for i in word2ph]), |
|
) |
|
) |
|
except Exception as e: |
|
print(line) |
|
print( |
|
f"An error occurred while generating the training set and validation set! Details:\n{e}" |
|
) |
|
|
|
transcription_path = cleaned_path |
|
spk_utt_map = defaultdict(list) |
|
spk_id_map = {} |
|
current_sid = 0 |
|
|
|
with open(transcription_path, "r", encoding="utf-8") as f: |
|
audioPaths = set() |
|
countSame = 0 |
|
countNotFound = 0 |
|
for line in f.readlines(): |
|
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|") |
|
if utt in audioPaths: |
|
|
|
print(f"Same audio matches multiple texts: {line}") |
|
countSame += 1 |
|
continue |
|
if not os.path.isfile(utt): |
|
|
|
print(f"Audio not found: {utt}") |
|
countNotFound += 1 |
|
continue |
|
audioPaths.add(utt) |
|
spk_utt_map[language].append(line) |
|
if spk not in spk_id_map.keys(): |
|
spk_id_map[spk] = current_sid |
|
current_sid += 1 |
|
print( |
|
f"Total repeated audios: {countSame}, Total number of audio not found: {countNotFound}" |
|
) |
|
|
|
train_list = [] |
|
val_list = [] |
|
|
|
for spk, utts in spk_utt_map.items(): |
|
shuffle(utts) |
|
val_list += utts[:val_per_lang] |
|
train_list += utts[val_per_lang:] |
|
|
|
shuffle(val_list) |
|
if len(val_list) > max_val_total: |
|
train_list += val_list[max_val_total:] |
|
val_list = val_list[:max_val_total] |
|
|
|
with open(train_path, "w", encoding="utf-8") as f: |
|
for line in train_list: |
|
f.write(line) |
|
|
|
with open(val_path, "w", encoding="utf-8") as f: |
|
for line in val_list: |
|
f.write(line) |
|
|
|
json_config = json.load(open(config_path, encoding="utf-8")) |
|
json_config["data"]["spk2id"] = spk_id_map |
|
json_config["data"]["n_speakers"] = len(spk_id_map) |
|
|
|
|
|
json_config["data"]["training_files"] = os.path.normpath(train_path).replace( |
|
"\\", "/" |
|
) |
|
json_config["data"]["validation_files"] = os.path.normpath(val_path).replace( |
|
"\\", "/" |
|
) |
|
with open(config_path, "w", encoding="utf-8") as f: |
|
json.dump(json_config, f, indent=2, ensure_ascii=False) |
|
print("Training set and validation set generation from texts is complete!") |
|
|
|
|
|
if __name__ == "__main__": |
|
preprocess() |
|
|