Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# import gradio as gr
|
3 |
+
|
4 |
+
# # Use a pipeline as a high-level helper
|
5 |
+
# from transformers import pipeline
|
6 |
+
|
7 |
+
# # Use a pipeline as a high-level helper
|
8 |
+
# # Load model directly
|
9 |
+
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
10 |
+
|
11 |
+
# # processor = AutoImageProcessor.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
12 |
+
# # model = AutoModelForImageClassification.from_pretrained("AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
13 |
+
# pipe = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
14 |
+
|
15 |
+
|
16 |
+
# # $ pip install gradio_client fastapi uvicorn
|
17 |
+
|
18 |
+
# import requests
|
19 |
+
# from PIL import Image
|
20 |
+
# from transformers import pipeline
|
21 |
+
# import io
|
22 |
+
# import base64
|
23 |
+
|
24 |
+
# Initialize the pipeline
|
25 |
+
# pipe = pipeline('image-classification')
|
26 |
+
|
27 |
+
# def load_image_from_path(image_path):
|
28 |
+
# return Image.open(image_path)
|
29 |
+
|
30 |
+
# def load_image_from_url(image_url):
|
31 |
+
# response = requests.get(image_url)
|
32 |
+
# return Image.open(io.BytesIO(response.content))
|
33 |
+
|
34 |
+
# def load_image_from_base64(base64_string):
|
35 |
+
# image_data = base64.b64decode(base64_string)
|
36 |
+
# return Image.open(io.BytesIO(image_data))
|
37 |
+
|
38 |
+
# def predict(image_input):
|
39 |
+
# if isinstance(image_input, str):
|
40 |
+
# if image_input.startswith('http'):
|
41 |
+
# image = load_image_from_url(image_input)
|
42 |
+
# elif image_input.startswith('/'):
|
43 |
+
# image = load_image_from_path(image_input)
|
44 |
+
# else:
|
45 |
+
# image = load_image_from_base64(image_input)
|
46 |
+
# elif isinstance(image_input, Image.Image):
|
47 |
+
# image = image_input
|
48 |
+
# else:
|
49 |
+
# raise ValueError("Incorrect format used for image. Should be an URL linking to an image, a base64 string, a local path, or a PIL image.")
|
50 |
+
|
51 |
+
# return pipe(image)
|
52 |
+
|
53 |
+
|
54 |
+
# def predict(image):
|
55 |
+
# return pipe(image)
|
56 |
+
|
57 |
+
# def main():
|
58 |
+
# # image_input = 'path_or_url_or_base64' # Update with actual input
|
59 |
+
# # output = predict(image_input)
|
60 |
+
# # print(output)
|
61 |
+
|
62 |
+
# demo = gr.Interface(
|
63 |
+
# fn=predict,
|
64 |
+
# inputs='image',
|
65 |
+
# outputs='text',
|
66 |
+
# )
|
67 |
+
|
68 |
+
# demo.launch()
|
69 |
+
|
70 |
+
# import requests
|
71 |
+
# import torch
|
72 |
+
# from PIL import Image
|
73 |
+
# from torchvision import transforms
|
74 |
+
|
75 |
+
# def predict(inp):
|
76 |
+
# inp = Image.fromarray(inp.astype("uint8"), "RGB")
|
77 |
+
# inp = transforms.ToTensor()(inp).unsqueeze(0)
|
78 |
+
# with torch.no_grad():
|
79 |
+
# prediction = torch.nn.functional.softmax(model(inp.to(device))[0], dim=0)
|
80 |
+
# return {labels[i]: float(prediction[i]) for i in range(1000)}
|
81 |
+
|
82 |
+
|
83 |
+
# inputs = gr.Image()
|
84 |
+
# outputs = gr.Label(num_top_classes=2)
|
85 |
+
|
86 |
+
# io = gr.Interface(
|
87 |
+
# fn=predict, inputs=inputs, outputs=outputs, examples=["dog.jpg"]
|
88 |
+
# )
|
89 |
+
# io.launch(inline=False, share=True)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
# import gradio as gr
|
98 |
+
# from transformers import pipeline
|
99 |
+
|
100 |
+
# pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
101 |
+
|
102 |
+
# def predict(image):
|
103 |
+
# predictions = pipeline(image)
|
104 |
+
# return {p["label"]: p["score"] for p in predictions}
|
105 |
+
|
106 |
+
# gr.Interface(
|
107 |
+
# predict,
|
108 |
+
# inputs=gr.inputs.Image(label="Upload Image", type="filepath"),
|
109 |
+
# outputs=gr.outputs.Label(num_top_classes=2),
|
110 |
+
# title="AI Generated? Or Not?",
|
111 |
+
# allow_flagging="manual"
|
112 |
+
# ).launch()
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
# if __name__ == "__main__":
|
117 |
+
# main()
|
118 |
+
|
119 |
+
import gradio as gr
|
120 |
+
from transformers import pipeline
|
121 |
+
|
122 |
+
pipeline = pipeline("image-classification", model="AZIIIIIIIIZ/vit-base-patch16-224-finetuned-eurosat")
|
123 |
+
|
124 |
+
def predict(input_img):
|
125 |
+
predictions = pipeline(input_img)
|
126 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
127 |
+
|
128 |
+
gradio_app = gr.Interface(
|
129 |
+
predict,
|
130 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
131 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
132 |
+
title="Hot Dog? Or Not?",
|
133 |
+
)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
gradio_app.launch()
|