Spaces:
Runtime error
Runtime error
Upload gpt_dev.ipynb
Browse files- gpt_dev.ipynb +1556 -0
gpt_dev.ipynb
ADDED
@@ -0,0 +1,1556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"source": [
|
20 |
+
"## Building a GPT\n",
|
21 |
+
"\n",
|
22 |
+
"Companion notebook to the [Zero To Hero](https://karpathy.ai/zero-to-hero.html) video on GPT."
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "wJpXpmjEYC_T"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
+
"metadata": {
|
32 |
+
"colab": {
|
33 |
+
"base_uri": "https://localhost:8080/"
|
34 |
+
},
|
35 |
+
"id": "h5hjCcLDr2WC",
|
36 |
+
"outputId": "24b008b5-5eb3-4882-a553-1ef45aaaf782"
|
37 |
+
},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"output_type": "stream",
|
41 |
+
"name": "stdout",
|
42 |
+
"text": [
|
43 |
+
"--2024-06-11 13:37:04-- https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\n",
|
44 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
|
45 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
|
46 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
47 |
+
"Length: 1115394 (1.1M) [text/plain]\n",
|
48 |
+
"Saving to: ‘input.txt.1’\n",
|
49 |
+
"\n",
|
50 |
+
"\rinput.txt.1 0%[ ] 0 --.-KB/s \rinput.txt.1 100%[===================>] 1.06M --.-KB/s in 0.05s \n",
|
51 |
+
"\n",
|
52 |
+
"2024-06-11 13:37:04 (21.7 MB/s) - ‘input.txt.1’ saved [1115394/1115394]\n",
|
53 |
+
"\n"
|
54 |
+
]
|
55 |
+
}
|
56 |
+
],
|
57 |
+
"source": [
|
58 |
+
"# We always start with a dataset to train on. Let's download the tiny shakespeare dataset\n",
|
59 |
+
"!wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"source": [
|
65 |
+
"# read it in to inspect it\n",
|
66 |
+
"with open('input.txt', 'r', encoding='utf-8') as f:\n",
|
67 |
+
" text = f.read()"
|
68 |
+
],
|
69 |
+
"metadata": {
|
70 |
+
"id": "O6medjfRsLD9"
|
71 |
+
},
|
72 |
+
"execution_count": 4,
|
73 |
+
"outputs": []
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"source": [
|
78 |
+
"print(\"length of dataset in characters: \", len(text))"
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"colab": {
|
82 |
+
"base_uri": "https://localhost:8080/"
|
83 |
+
},
|
84 |
+
"id": "6xWI_VyAsN8F",
|
85 |
+
"outputId": "68d2ea04-26cd-4ce8-f31e-10868b38f7d0"
|
86 |
+
},
|
87 |
+
"execution_count": 5,
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"output_type": "stream",
|
91 |
+
"name": "stdout",
|
92 |
+
"text": [
|
93 |
+
"length of dataset in characters: 1115394\n"
|
94 |
+
]
|
95 |
+
}
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"source": [
|
101 |
+
"# let's look at the first 1000 characters\n",
|
102 |
+
"print(text[:1000])"
|
103 |
+
],
|
104 |
+
"metadata": {
|
105 |
+
"colab": {
|
106 |
+
"base_uri": "https://localhost:8080/"
|
107 |
+
},
|
108 |
+
"id": "2c5V0FvqseE0",
|
109 |
+
"outputId": "5306e25a-cad6-4ac6-9d34-8138bbaa34a4"
|
110 |
+
},
|
111 |
+
"execution_count": 6,
|
112 |
+
"outputs": [
|
113 |
+
{
|
114 |
+
"output_type": "stream",
|
115 |
+
"name": "stdout",
|
116 |
+
"text": [
|
117 |
+
"First Citizen:\n",
|
118 |
+
"Before we proceed any further, hear me speak.\n",
|
119 |
+
"\n",
|
120 |
+
"All:\n",
|
121 |
+
"Speak, speak.\n",
|
122 |
+
"\n",
|
123 |
+
"First Citizen:\n",
|
124 |
+
"You are all resolved rather to die than to famish?\n",
|
125 |
+
"\n",
|
126 |
+
"All:\n",
|
127 |
+
"Resolved. resolved.\n",
|
128 |
+
"\n",
|
129 |
+
"First Citizen:\n",
|
130 |
+
"First, you know Caius Marcius is chief enemy to the people.\n",
|
131 |
+
"\n",
|
132 |
+
"All:\n",
|
133 |
+
"We know't, we know't.\n",
|
134 |
+
"\n",
|
135 |
+
"First Citizen:\n",
|
136 |
+
"Let us kill him, and we'll have corn at our own price.\n",
|
137 |
+
"Is't a verdict?\n",
|
138 |
+
"\n",
|
139 |
+
"All:\n",
|
140 |
+
"No more talking on't; let it be done: away, away!\n",
|
141 |
+
"\n",
|
142 |
+
"Second Citizen:\n",
|
143 |
+
"One word, good citizens.\n",
|
144 |
+
"\n",
|
145 |
+
"First Citizen:\n",
|
146 |
+
"We are accounted poor citizens, the patricians good.\n",
|
147 |
+
"What authority surfeits on would relieve us: if they\n",
|
148 |
+
"would yield us but the superfluity, while it were\n",
|
149 |
+
"wholesome, we might guess they relieved us humanely;\n",
|
150 |
+
"but they think we are too dear: the leanness that\n",
|
151 |
+
"afflicts us, the object of our misery, is as an\n",
|
152 |
+
"inventory to particularise their abundance; our\n",
|
153 |
+
"sufferance is a gain to them Let us revenge this with\n",
|
154 |
+
"our pikes, ere we become rakes: for the gods know I\n",
|
155 |
+
"speak this in hunger for bread, not in thirst for revenge.\n",
|
156 |
+
"\n",
|
157 |
+
"\n"
|
158 |
+
]
|
159 |
+
}
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"source": [
|
165 |
+
"# here are all the unique characters that occur in this text\n",
|
166 |
+
"chars = sorted(list(set(text)))\n",
|
167 |
+
"vocab_size = len(chars)\n",
|
168 |
+
"print(''.join(chars))\n",
|
169 |
+
"print(vocab_size)"
|
170 |
+
],
|
171 |
+
"metadata": {
|
172 |
+
"colab": {
|
173 |
+
"base_uri": "https://localhost:8080/"
|
174 |
+
},
|
175 |
+
"id": "0e-Rbyr8sfM8",
|
176 |
+
"outputId": "3cfb92f5-e9dc-4a4d-bc24-01c34e91fe2c"
|
177 |
+
},
|
178 |
+
"execution_count": 7,
|
179 |
+
"outputs": [
|
180 |
+
{
|
181 |
+
"output_type": "stream",
|
182 |
+
"name": "stdout",
|
183 |
+
"text": [
|
184 |
+
"\n",
|
185 |
+
" !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\n",
|
186 |
+
"65\n"
|
187 |
+
]
|
188 |
+
}
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"source": [
|
194 |
+
"# create a mapping from characters to integers\n",
|
195 |
+
"stoi = { ch:i for i,ch in enumerate(chars) }\n",
|
196 |
+
"itos = { i:ch for i,ch in enumerate(chars) }\n",
|
197 |
+
"encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers\n",
|
198 |
+
"decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string\n",
|
199 |
+
"\n",
|
200 |
+
"print(encode(\"hii there\"))\n",
|
201 |
+
"print(decode(encode(\"hii there\")))"
|
202 |
+
],
|
203 |
+
"metadata": {
|
204 |
+
"colab": {
|
205 |
+
"base_uri": "https://localhost:8080/"
|
206 |
+
},
|
207 |
+
"id": "Yw1LKNCgwjj1",
|
208 |
+
"outputId": "b32844f8-99ed-4eb8-c569-06196f56051f"
|
209 |
+
},
|
210 |
+
"execution_count": 8,
|
211 |
+
"outputs": [
|
212 |
+
{
|
213 |
+
"output_type": "stream",
|
214 |
+
"name": "stdout",
|
215 |
+
"text": [
|
216 |
+
"[46, 47, 47, 1, 58, 46, 43, 56, 43]\n",
|
217 |
+
"hii there\n"
|
218 |
+
]
|
219 |
+
}
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"source": [
|
225 |
+
"# let's now encode the entire text dataset and store it into a torch.Tensor\n",
|
226 |
+
"import torch # we use PyTorch: https://pytorch.org\n",
|
227 |
+
"data = torch.tensor(encode(text), dtype=torch.long)\n",
|
228 |
+
"print(data.shape, data.dtype)\n",
|
229 |
+
"print(data[:1000]) # the 1000 characters we looked at earier will to the GPT look like this"
|
230 |
+
],
|
231 |
+
"metadata": {
|
232 |
+
"colab": {
|
233 |
+
"base_uri": "https://localhost:8080/"
|
234 |
+
},
|
235 |
+
"id": "YJb0OXPwzvqg",
|
236 |
+
"outputId": "7081b874-3ef5-4e65-ee10-acbc24ac9f9b"
|
237 |
+
},
|
238 |
+
"execution_count": 9,
|
239 |
+
"outputs": [
|
240 |
+
{
|
241 |
+
"output_type": "stream",
|
242 |
+
"name": "stdout",
|
243 |
+
"text": [
|
244 |
+
"torch.Size([1115394]) torch.int64\n",
|
245 |
+
"tensor([18, 47, 56, 57, 58, 1, 15, 47, 58, 47, 64, 43, 52, 10, 0, 14, 43, 44,\n",
|
246 |
+
" 53, 56, 43, 1, 61, 43, 1, 54, 56, 53, 41, 43, 43, 42, 1, 39, 52, 63,\n",
|
247 |
+
" 1, 44, 59, 56, 58, 46, 43, 56, 6, 1, 46, 43, 39, 56, 1, 51, 43, 1,\n",
|
248 |
+
" 57, 54, 43, 39, 49, 8, 0, 0, 13, 50, 50, 10, 0, 31, 54, 43, 39, 49,\n",
|
249 |
+
" 6, 1, 57, 54, 43, 39, 49, 8, 0, 0, 18, 47, 56, 57, 58, 1, 15, 47,\n",
|
250 |
+
" 58, 47, 64, 43, 52, 10, 0, 37, 53, 59, 1, 39, 56, 43, 1, 39, 50, 50,\n",
|
251 |
+
" 1, 56, 43, 57, 53, 50, 60, 43, 42, 1, 56, 39, 58, 46, 43, 56, 1, 58,\n",
|
252 |
+
" 53, 1, 42, 47, 43, 1, 58, 46, 39, 52, 1, 58, 53, 1, 44, 39, 51, 47,\n",
|
253 |
+
" 57, 46, 12, 0, 0, 13, 50, 50, 10, 0, 30, 43, 57, 53, 50, 60, 43, 42,\n",
|
254 |
+
" 8, 1, 56, 43, 57, 53, 50, 60, 43, 42, 8, 0, 0, 18, 47, 56, 57, 58,\n",
|
255 |
+
" 1, 15, 47, 58, 47, 64, 43, 52, 10, 0, 18, 47, 56, 57, 58, 6, 1, 63,\n",
|
256 |
+
" 53, 59, 1, 49, 52, 53, 61, 1, 15, 39, 47, 59, 57, 1, 25, 39, 56, 41,\n",
|
257 |
+
" 47, 59, 57, 1, 47, 57, 1, 41, 46, 47, 43, 44, 1, 43, 52, 43, 51, 63,\n",
|
258 |
+
" 1, 58, 53, 1, 58, 46, 43, 1, 54, 43, 53, 54, 50, 43, 8, 0, 0, 13,\n",
|
259 |
+
" 50, 50, 10, 0, 35, 43, 1, 49, 52, 53, 61, 5, 58, 6, 1, 61, 43, 1,\n",
|
260 |
+
" 49, 52, 53, 61, 5, 58, 8, 0, 0, 18, 47, 56, 57, 58, 1, 15, 47, 58,\n",
|
261 |
+
" 47, 64, 43, 52, 10, 0, 24, 43, 58, 1, 59, 57, 1, 49, 47, 50, 50, 1,\n",
|
262 |
+
" 46, 47, 51, 6, 1, 39, 52, 42, 1, 61, 43, 5, 50, 50, 1, 46, 39, 60,\n",
|
263 |
+
" 43, 1, 41, 53, 56, 52, 1, 39, 58, 1, 53, 59, 56, 1, 53, 61, 52, 1,\n",
|
264 |
+
" 54, 56, 47, 41, 43, 8, 0, 21, 57, 5, 58, 1, 39, 1, 60, 43, 56, 42,\n",
|
265 |
+
" 47, 41, 58, 12, 0, 0, 13, 50, 50, 10, 0, 26, 53, 1, 51, 53, 56, 43,\n",
|
266 |
+
" 1, 58, 39, 50, 49, 47, 52, 45, 1, 53, 52, 5, 58, 11, 1, 50, 43, 58,\n",
|
267 |
+
" 1, 47, 58, 1, 40, 43, 1, 42, 53, 52, 43, 10, 1, 39, 61, 39, 63, 6,\n",
|
268 |
+
" 1, 39, 61, 39, 63, 2, 0, 0, 31, 43, 41, 53, 52, 42, 1, 15, 47, 58,\n",
|
269 |
+
" 47, 64, 43, 52, 10, 0, 27, 52, 43, 1, 61, 53, 56, 42, 6, 1, 45, 53,\n",
|
270 |
+
" 53, 42, 1, 41, 47, 58, 47, 64, 43, 52, 57, 8, 0, 0, 18, 47, 56, 57,\n",
|
271 |
+
" 58, 1, 15, 47, 58, 47, 64, 43, 52, 10, 0, 35, 43, 1, 39, 56, 43, 1,\n",
|
272 |
+
" 39, 41, 41, 53, 59, 52, 58, 43, 42, 1, 54, 53, 53, 56, 1, 41, 47, 58,\n",
|
273 |
+
" 47, 64, 43, 52, 57, 6, 1, 58, 46, 43, 1, 54, 39, 58, 56, 47, 41, 47,\n",
|
274 |
+
" 39, 52, 57, 1, 45, 53, 53, 42, 8, 0, 35, 46, 39, 58, 1, 39, 59, 58,\n",
|
275 |
+
" 46, 53, 56, 47, 58, 63, 1, 57, 59, 56, 44, 43, 47, 58, 57, 1, 53, 52,\n",
|
276 |
+
" 1, 61, 53, 59, 50, 42, 1, 56, 43, 50, 47, 43, 60, 43, 1, 59, 57, 10,\n",
|
277 |
+
" 1, 47, 44, 1, 58, 46, 43, 63, 0, 61, 53, 59, 50, 42, 1, 63, 47, 43,\n",
|
278 |
+
" 50, 42, 1, 59, 57, 1, 40, 59, 58, 1, 58, 46, 43, 1, 57, 59, 54, 43,\n",
|
279 |
+
" 56, 44, 50, 59, 47, 58, 63, 6, 1, 61, 46, 47, 50, 43, 1, 47, 58, 1,\n",
|
280 |
+
" 61, 43, 56, 43, 0, 61, 46, 53, 50, 43, 57, 53, 51, 43, 6, 1, 61, 43,\n",
|
281 |
+
" 1, 51, 47, 45, 46, 58, 1, 45, 59, 43, 57, 57, 1, 58, 46, 43, 63, 1,\n",
|
282 |
+
" 56, 43, 50, 47, 43, 60, 43, 42, 1, 59, 57, 1, 46, 59, 51, 39, 52, 43,\n",
|
283 |
+
" 50, 63, 11, 0, 40, 59, 58, 1, 58, 46, 43, 63, 1, 58, 46, 47, 52, 49,\n",
|
284 |
+
" 1, 61, 43, 1, 39, 56, 43, 1, 58, 53, 53, 1, 42, 43, 39, 56, 10, 1,\n",
|
285 |
+
" 58, 46, 43, 1, 50, 43, 39, 52, 52, 43, 57, 57, 1, 58, 46, 39, 58, 0,\n",
|
286 |
+
" 39, 44, 44, 50, 47, 41, 58, 57, 1, 59, 57, 6, 1, 58, 46, 43, 1, 53,\n",
|
287 |
+
" 40, 48, 43, 41, 58, 1, 53, 44, 1, 53, 59, 56, 1, 51, 47, 57, 43, 56,\n",
|
288 |
+
" 63, 6, 1, 47, 57, 1, 39, 57, 1, 39, 52, 0, 47, 52, 60, 43, 52, 58,\n",
|
289 |
+
" 53, 56, 63, 1, 58, 53, 1, 54, 39, 56, 58, 47, 41, 59, 50, 39, 56, 47,\n",
|
290 |
+
" 57, 43, 1, 58, 46, 43, 47, 56, 1, 39, 40, 59, 52, 42, 39, 52, 41, 43,\n",
|
291 |
+
" 11, 1, 53, 59, 56, 0, 57, 59, 44, 44, 43, 56, 39, 52, 41, 43, 1, 47,\n",
|
292 |
+
" 57, 1, 39, 1, 45, 39, 47, 52, 1, 58, 53, 1, 58, 46, 43, 51, 1, 24,\n",
|
293 |
+
" 43, 58, 1, 59, 57, 1, 56, 43, 60, 43, 52, 45, 43, 1, 58, 46, 47, 57,\n",
|
294 |
+
" 1, 61, 47, 58, 46, 0, 53, 59, 56, 1, 54, 47, 49, 43, 57, 6, 1, 43,\n",
|
295 |
+
" 56, 43, 1, 61, 43, 1, 40, 43, 41, 53, 51, 43, 1, 56, 39, 49, 43, 57,\n",
|
296 |
+
" 10, 1, 44, 53, 56, 1, 58, 46, 43, 1, 45, 53, 42, 57, 1, 49, 52, 53,\n",
|
297 |
+
" 61, 1, 21, 0, 57, 54, 43, 39, 49, 1, 58, 46, 47, 57, 1, 47, 52, 1,\n",
|
298 |
+
" 46, 59, 52, 45, 43, 56, 1, 44, 53, 56, 1, 40, 56, 43, 39, 42, 6, 1,\n",
|
299 |
+
" 52, 53, 58, 1, 47, 52, 1, 58, 46, 47, 56, 57, 58, 1, 44, 53, 56, 1,\n",
|
300 |
+
" 56, 43, 60, 43, 52, 45, 43, 8, 0, 0])\n"
|
301 |
+
]
|
302 |
+
}
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"source": [
|
308 |
+
"# Let's now split up the data into train and validation sets\n",
|
309 |
+
"n = int(0.9*len(data)) # first 90% will be train, rest val\n",
|
310 |
+
"train_data = data[:n]\n",
|
311 |
+
"val_data = data[n:]"
|
312 |
+
],
|
313 |
+
"metadata": {
|
314 |
+
"id": "f_WIXqxz0lU5"
|
315 |
+
},
|
316 |
+
"execution_count": 10,
|
317 |
+
"outputs": []
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"source": [
|
322 |
+
"block_size = 8\n",
|
323 |
+
"train_data[:block_size+1]"
|
324 |
+
],
|
325 |
+
"metadata": {
|
326 |
+
"colab": {
|
327 |
+
"base_uri": "https://localhost:8080/"
|
328 |
+
},
|
329 |
+
"id": "TD5Bj8Y6IAD4",
|
330 |
+
"outputId": "44a45420-f035-40e7-a089-7685ca25d361"
|
331 |
+
},
|
332 |
+
"execution_count": 11,
|
333 |
+
"outputs": [
|
334 |
+
{
|
335 |
+
"output_type": "execute_result",
|
336 |
+
"data": {
|
337 |
+
"text/plain": [
|
338 |
+
"tensor([18, 47, 56, 57, 58, 1, 15, 47, 58])"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
"metadata": {},
|
342 |
+
"execution_count": 11
|
343 |
+
}
|
344 |
+
]
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"cell_type": "code",
|
348 |
+
"source": [
|
349 |
+
"x = train_data[:block_size]\n",
|
350 |
+
"y = train_data[1:block_size+1]\n",
|
351 |
+
"for t in range(block_size):\n",
|
352 |
+
" context = x[:t+1]\n",
|
353 |
+
" target = y[t]\n",
|
354 |
+
" print(f\"when input is {context} the target: {target}\")"
|
355 |
+
],
|
356 |
+
"metadata": {
|
357 |
+
"colab": {
|
358 |
+
"base_uri": "https://localhost:8080/"
|
359 |
+
},
|
360 |
+
"id": "9HXDe8vGJCEn",
|
361 |
+
"outputId": "96af3b4e-7307-4949-c0f9-05c892514196"
|
362 |
+
},
|
363 |
+
"execution_count": 12,
|
364 |
+
"outputs": [
|
365 |
+
{
|
366 |
+
"output_type": "stream",
|
367 |
+
"name": "stdout",
|
368 |
+
"text": [
|
369 |
+
"when input is tensor([18]) the target: 47\n",
|
370 |
+
"when input is tensor([18, 47]) the target: 56\n",
|
371 |
+
"when input is tensor([18, 47, 56]) the target: 57\n",
|
372 |
+
"when input is tensor([18, 47, 56, 57]) the target: 58\n",
|
373 |
+
"when input is tensor([18, 47, 56, 57, 58]) the target: 1\n",
|
374 |
+
"when input is tensor([18, 47, 56, 57, 58, 1]) the target: 15\n",
|
375 |
+
"when input is tensor([18, 47, 56, 57, 58, 1, 15]) the target: 47\n",
|
376 |
+
"when input is tensor([18, 47, 56, 57, 58, 1, 15, 47]) the target: 58\n"
|
377 |
+
]
|
378 |
+
}
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"source": [
|
384 |
+
"torch.manual_seed(1337)\n",
|
385 |
+
"batch_size = 4 # how many independent sequences will we process in parallel?\n",
|
386 |
+
"block_size = 8 # what is the maximum context length for predictions?\n",
|
387 |
+
"\n",
|
388 |
+
"def get_batch(split):\n",
|
389 |
+
" # generate a small batch of data of inputs x and targets y\n",
|
390 |
+
" data = train_data if split == 'train' else val_data\n",
|
391 |
+
" ix = torch.randint(len(data) - block_size, (batch_size,))\n",
|
392 |
+
" x = torch.stack([data[i:i+block_size] for i in ix])\n",
|
393 |
+
" y = torch.stack([data[i+1:i+block_size+1] for i in ix])\n",
|
394 |
+
" return x, y\n",
|
395 |
+
"\n",
|
396 |
+
"xb, yb = get_batch('train')\n",
|
397 |
+
"print('inputs:')\n",
|
398 |
+
"print(xb.shape)\n",
|
399 |
+
"print(xb)\n",
|
400 |
+
"print('targets:')\n",
|
401 |
+
"print(yb.shape)\n",
|
402 |
+
"print(yb)\n",
|
403 |
+
"\n",
|
404 |
+
"print('----')\n",
|
405 |
+
"\n",
|
406 |
+
"for b in range(batch_size): # batch dimension\n",
|
407 |
+
" for t in range(block_size): # time dimension\n",
|
408 |
+
" context = xb[b, :t+1]\n",
|
409 |
+
" target = yb[b,t]\n",
|
410 |
+
" print(f\"when input is {context.tolist()} the target: {target}\")"
|
411 |
+
],
|
412 |
+
"metadata": {
|
413 |
+
"colab": {
|
414 |
+
"base_uri": "https://localhost:8080/"
|
415 |
+
},
|
416 |
+
"id": "Q3k1Czf7LuA9",
|
417 |
+
"outputId": "e7e206dc-1cae-4f95-a82d-5faa6fd1c627"
|
418 |
+
},
|
419 |
+
"execution_count": 13,
|
420 |
+
"outputs": [
|
421 |
+
{
|
422 |
+
"output_type": "stream",
|
423 |
+
"name": "stdout",
|
424 |
+
"text": [
|
425 |
+
"inputs:\n",
|
426 |
+
"torch.Size([4, 8])\n",
|
427 |
+
"tensor([[24, 43, 58, 5, 57, 1, 46, 43],\n",
|
428 |
+
" [44, 53, 56, 1, 58, 46, 39, 58],\n",
|
429 |
+
" [52, 58, 1, 58, 46, 39, 58, 1],\n",
|
430 |
+
" [25, 17, 27, 10, 0, 21, 1, 54]])\n",
|
431 |
+
"targets:\n",
|
432 |
+
"torch.Size([4, 8])\n",
|
433 |
+
"tensor([[43, 58, 5, 57, 1, 46, 43, 39],\n",
|
434 |
+
" [53, 56, 1, 58, 46, 39, 58, 1],\n",
|
435 |
+
" [58, 1, 58, 46, 39, 58, 1, 46],\n",
|
436 |
+
" [17, 27, 10, 0, 21, 1, 54, 39]])\n",
|
437 |
+
"----\n",
|
438 |
+
"when input is [24] the target: 43\n",
|
439 |
+
"when input is [24, 43] the target: 58\n",
|
440 |
+
"when input is [24, 43, 58] the target: 5\n",
|
441 |
+
"when input is [24, 43, 58, 5] the target: 57\n",
|
442 |
+
"when input is [24, 43, 58, 5, 57] the target: 1\n",
|
443 |
+
"when input is [24, 43, 58, 5, 57, 1] the target: 46\n",
|
444 |
+
"when input is [24, 43, 58, 5, 57, 1, 46] the target: 43\n",
|
445 |
+
"when input is [24, 43, 58, 5, 57, 1, 46, 43] the target: 39\n",
|
446 |
+
"when input is [44] the target: 53\n",
|
447 |
+
"when input is [44, 53] the target: 56\n",
|
448 |
+
"when input is [44, 53, 56] the target: 1\n",
|
449 |
+
"when input is [44, 53, 56, 1] the target: 58\n",
|
450 |
+
"when input is [44, 53, 56, 1, 58] the target: 46\n",
|
451 |
+
"when input is [44, 53, 56, 1, 58, 46] the target: 39\n",
|
452 |
+
"when input is [44, 53, 56, 1, 58, 46, 39] the target: 58\n",
|
453 |
+
"when input is [44, 53, 56, 1, 58, 46, 39, 58] the target: 1\n",
|
454 |
+
"when input is [52] the target: 58\n",
|
455 |
+
"when input is [52, 58] the target: 1\n",
|
456 |
+
"when input is [52, 58, 1] the target: 58\n",
|
457 |
+
"when input is [52, 58, 1, 58] the target: 46\n",
|
458 |
+
"when input is [52, 58, 1, 58, 46] the target: 39\n",
|
459 |
+
"when input is [52, 58, 1, 58, 46, 39] the target: 58\n",
|
460 |
+
"when input is [52, 58, 1, 58, 46, 39, 58] the target: 1\n",
|
461 |
+
"when input is [52, 58, 1, 58, 46, 39, 58, 1] the target: 46\n",
|
462 |
+
"when input is [25] the target: 17\n",
|
463 |
+
"when input is [25, 17] the target: 27\n",
|
464 |
+
"when input is [25, 17, 27] the target: 10\n",
|
465 |
+
"when input is [25, 17, 27, 10] the target: 0\n",
|
466 |
+
"when input is [25, 17, 27, 10, 0] the target: 21\n",
|
467 |
+
"when input is [25, 17, 27, 10, 0, 21] the target: 1\n",
|
468 |
+
"when input is [25, 17, 27, 10, 0, 21, 1] the target: 54\n",
|
469 |
+
"when input is [25, 17, 27, 10, 0, 21, 1, 54] the target: 39\n"
|
470 |
+
]
|
471 |
+
}
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "code",
|
476 |
+
"source": [
|
477 |
+
"print(xb) # our input to the transformer"
|
478 |
+
],
|
479 |
+
"metadata": {
|
480 |
+
"colab": {
|
481 |
+
"base_uri": "https://localhost:8080/"
|
482 |
+
},
|
483 |
+
"id": "qpyyAeIzQjlO",
|
484 |
+
"outputId": "febd3181-36c8-4567-f33c-dbfc4cbc99d5"
|
485 |
+
},
|
486 |
+
"execution_count": 14,
|
487 |
+
"outputs": [
|
488 |
+
{
|
489 |
+
"output_type": "stream",
|
490 |
+
"name": "stdout",
|
491 |
+
"text": [
|
492 |
+
"tensor([[24, 43, 58, 5, 57, 1, 46, 43],\n",
|
493 |
+
" [44, 53, 56, 1, 58, 46, 39, 58],\n",
|
494 |
+
" [52, 58, 1, 58, 46, 39, 58, 1],\n",
|
495 |
+
" [25, 17, 27, 10, 0, 21, 1, 54]])\n"
|
496 |
+
]
|
497 |
+
}
|
498 |
+
]
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"cell_type": "code",
|
502 |
+
"source": [
|
503 |
+
"import torch\n",
|
504 |
+
"import torch.nn as nn\n",
|
505 |
+
"from torch.nn import functional as F\n",
|
506 |
+
"torch.manual_seed(1337)\n",
|
507 |
+
"\n",
|
508 |
+
"class BigramLanguageModel(nn.Module):\n",
|
509 |
+
"\n",
|
510 |
+
" def __init__(self, vocab_size):\n",
|
511 |
+
" super().__init__()\n",
|
512 |
+
" # each token directly reads off the logits for the next token from a lookup table\n",
|
513 |
+
" self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)\n",
|
514 |
+
"\n",
|
515 |
+
" def forward(self, idx, targets=None):\n",
|
516 |
+
"\n",
|
517 |
+
" # idx and targets are both (B,T) tensor of integers\n",
|
518 |
+
" logits = self.token_embedding_table(idx) # (B,T,C)\n",
|
519 |
+
"\n",
|
520 |
+
" if targets is None:\n",
|
521 |
+
" loss = None\n",
|
522 |
+
" else:\n",
|
523 |
+
" B, T, C = logits.shape\n",
|
524 |
+
" logits = logits.view(B*T, C)\n",
|
525 |
+
" targets = targets.view(B*T)\n",
|
526 |
+
" loss = F.cross_entropy(logits, targets)\n",
|
527 |
+
"\n",
|
528 |
+
" return logits, loss\n",
|
529 |
+
"\n",
|
530 |
+
" def generate(self, idx, max_new_tokens):\n",
|
531 |
+
" # idx is (B, T) array of indices in the current context\n",
|
532 |
+
" for _ in range(max_new_tokens):\n",
|
533 |
+
" # get the predictions\n",
|
534 |
+
" logits, loss = self(idx)\n",
|
535 |
+
" # focus only on the last time step\n",
|
536 |
+
" logits = logits[:, -1, :] # becomes (B, C)\n",
|
537 |
+
" # apply softmax to get probabilities\n",
|
538 |
+
" probs = F.softmax(logits, dim=-1) # (B, C)\n",
|
539 |
+
" # sample from the distribution\n",
|
540 |
+
" idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)\n",
|
541 |
+
" # append sampled index to the running sequence\n",
|
542 |
+
" idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)\n",
|
543 |
+
" return idx\n",
|
544 |
+
"\n",
|
545 |
+
"m = BigramLanguageModel(vocab_size)\n",
|
546 |
+
"logits, loss = m(xb, yb)\n",
|
547 |
+
"print(logits.shape)\n",
|
548 |
+
"print(loss)\n",
|
549 |
+
"\n",
|
550 |
+
"print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=100)[0].tolist()))\n"
|
551 |
+
],
|
552 |
+
"metadata": {
|
553 |
+
"colab": {
|
554 |
+
"base_uri": "https://localhost:8080/"
|
555 |
+
},
|
556 |
+
"id": "nql_1ER53oCf",
|
557 |
+
"outputId": "7b1620c9-3bf2-45a2-8e08-d6ca73d09528"
|
558 |
+
},
|
559 |
+
"execution_count": 15,
|
560 |
+
"outputs": [
|
561 |
+
{
|
562 |
+
"output_type": "stream",
|
563 |
+
"name": "stdout",
|
564 |
+
"text": [
|
565 |
+
"torch.Size([32, 65])\n",
|
566 |
+
"tensor(4.8786, grad_fn=<NllLossBackward0>)\n",
|
567 |
+
"\n",
|
568 |
+
"Sr?qP-QWktXoL&jLDJgOLVz'RIoDqHdhsV&vLLxatjscMpwLERSPyao.qfzs$Ys$zF-w,;eEkzxjgCKFChs!iWW.ObzDnxA Ms$3\n"
|
569 |
+
]
|
570 |
+
}
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "code",
|
575 |
+
"source": [
|
576 |
+
"# create a PyTorch optimizer\n",
|
577 |
+
"optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3)"
|
578 |
+
],
|
579 |
+
"metadata": {
|
580 |
+
"id": "eTyJ8qAaDdiF"
|
581 |
+
},
|
582 |
+
"execution_count": 16,
|
583 |
+
"outputs": []
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"source": [
|
588 |
+
"batch_size = 32\n",
|
589 |
+
"for steps in range(100): # increase number of steps for good results...\n",
|
590 |
+
"\n",
|
591 |
+
" # sample a batch of data\n",
|
592 |
+
" xb, yb = get_batch('train')\n",
|
593 |
+
"\n",
|
594 |
+
" # evaluate the loss\n",
|
595 |
+
" logits, loss = m(xb, yb)\n",
|
596 |
+
" optimizer.zero_grad(set_to_none=True)\n",
|
597 |
+
" loss.backward()\n",
|
598 |
+
" optimizer.step()\n",
|
599 |
+
"\n",
|
600 |
+
"print(loss.item())\n"
|
601 |
+
],
|
602 |
+
"metadata": {
|
603 |
+
"colab": {
|
604 |
+
"base_uri": "https://localhost:8080/"
|
605 |
+
},
|
606 |
+
"id": "Hs4kI8YdEkQj",
|
607 |
+
"outputId": "234b1d99-e1d5-4394-ca9a-964027301d48"
|
608 |
+
},
|
609 |
+
"execution_count": 17,
|
610 |
+
"outputs": [
|
611 |
+
{
|
612 |
+
"output_type": "stream",
|
613 |
+
"name": "stdout",
|
614 |
+
"text": [
|
615 |
+
"4.587916374206543\n"
|
616 |
+
]
|
617 |
+
}
|
618 |
+
]
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"cell_type": "code",
|
622 |
+
"source": [
|
623 |
+
"print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=500)[0].tolist()))"
|
624 |
+
],
|
625 |
+
"metadata": {
|
626 |
+
"colab": {
|
627 |
+
"base_uri": "https://localhost:8080/"
|
628 |
+
},
|
629 |
+
"id": "EcVIDWAZEtjN",
|
630 |
+
"outputId": "13e7e5a8-e382-4610-aecb-ce274d466533"
|
631 |
+
},
|
632 |
+
"execution_count": 18,
|
633 |
+
"outputs": [
|
634 |
+
{
|
635 |
+
"output_type": "stream",
|
636 |
+
"name": "stdout",
|
637 |
+
"text": [
|
638 |
+
"\n",
|
639 |
+
"xiKi-RJ:CgqVuUa!U?qMH.uk!sCuMXvv!CJFfx;LgRyJknOEti.?I&-gPlLyulId?XlaInQ'q,lT$\n",
|
640 |
+
"3Q&sGlvHQ?mqSq-eON\n",
|
641 |
+
"x?SP fUAfCAuCX:bOlgiRQWN:Mphaw\n",
|
642 |
+
"tRLKuYXEaAXxrcq-gCUzeh3w!AcyaylgYWjmJM?Uzw:inaY,:C&OECW:vmGGJAn3onAuMgia!ms$Vb q-gCOcPcUhOnxJGUGSPJWT:.?ujmJFoiNL&A'DxY,prZ?qdT;hoo'dHooXXlxf'WkHK&u3Q?rqUi.kz;?Yx?C&u3Qbfzxlyh'Vl:zyxjKXgC?\n",
|
643 |
+
"lv'QKFiBeviNxO'm!Upm$srm&TqViqiBD3HBP!juEOpmZJyF$Fwfy!PlvWPFC\n",
|
644 |
+
"&WDdP!Ko,px\n",
|
645 |
+
"x\n",
|
646 |
+
"tREOE;AJ.BeXkylOVD3KHp$e?nD,.SFbWWI'ubcL!q-tU;aXmJ&uGXHxJXI&Z!gHRpajj;l.\n",
|
647 |
+
"pTErIBjx;JKIgoCnLGXrJSP!AU-AcbczR?\n"
|
648 |
+
]
|
649 |
+
}
|
650 |
+
]
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"cell_type": "markdown",
|
654 |
+
"source": [
|
655 |
+
"## The mathematical trick in self-attention"
|
656 |
+
],
|
657 |
+
"metadata": {
|
658 |
+
"id": "XinV8nmAnmKN"
|
659 |
+
}
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"cell_type": "code",
|
663 |
+
"source": [
|
664 |
+
"# toy example illustrating how matrix multiplication can be used for a \"weighted aggregation\"\n",
|
665 |
+
"torch.manual_seed(42)\n",
|
666 |
+
"a = torch.tril(torch.ones(3, 3))\n",
|
667 |
+
"a = a / torch.sum(a, 1, keepdim=True)\n",
|
668 |
+
"b = torch.randint(0,10,(3,2)).float()\n",
|
669 |
+
"c = a @ b\n",
|
670 |
+
"print('a=')\n",
|
671 |
+
"print(a)\n",
|
672 |
+
"print('--')\n",
|
673 |
+
"print('b=')\n",
|
674 |
+
"print(b)\n",
|
675 |
+
"print('--')\n",
|
676 |
+
"print('c=')\n",
|
677 |
+
"print(c)"
|
678 |
+
],
|
679 |
+
"metadata": {
|
680 |
+
"colab": {
|
681 |
+
"base_uri": "https://localhost:8080/"
|
682 |
+
},
|
683 |
+
"id": "tukiH-NbRBhA",
|
684 |
+
"outputId": "4de5f70a-e12c-4c6a-d591-5d0720e9de8c"
|
685 |
+
},
|
686 |
+
"execution_count": 19,
|
687 |
+
"outputs": [
|
688 |
+
{
|
689 |
+
"output_type": "stream",
|
690 |
+
"name": "stdout",
|
691 |
+
"text": [
|
692 |
+
"a=\n",
|
693 |
+
"tensor([[1.0000, 0.0000, 0.0000],\n",
|
694 |
+
" [0.5000, 0.5000, 0.0000],\n",
|
695 |
+
" [0.3333, 0.3333, 0.3333]])\n",
|
696 |
+
"--\n",
|
697 |
+
"b=\n",
|
698 |
+
"tensor([[2., 7.],\n",
|
699 |
+
" [6., 4.],\n",
|
700 |
+
" [6., 5.]])\n",
|
701 |
+
"--\n",
|
702 |
+
"c=\n",
|
703 |
+
"tensor([[2.0000, 7.0000],\n",
|
704 |
+
" [4.0000, 5.5000],\n",
|
705 |
+
" [4.6667, 5.3333]])\n"
|
706 |
+
]
|
707 |
+
}
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "code",
|
712 |
+
"source": [
|
713 |
+
"# consider the following toy example:\n",
|
714 |
+
"\n",
|
715 |
+
"torch.manual_seed(1337)\n",
|
716 |
+
"B,T,C = 4,8,2 # batch, time, channels\n",
|
717 |
+
"x = torch.randn(B,T,C)\n",
|
718 |
+
"x.shape"
|
719 |
+
],
|
720 |
+
"metadata": {
|
721 |
+
"colab": {
|
722 |
+
"base_uri": "https://localhost:8080/"
|
723 |
+
},
|
724 |
+
"id": "Hs_E24uRE8kr",
|
725 |
+
"outputId": "f1591218-d10f-420e-8d5a-456a0f90aed9"
|
726 |
+
},
|
727 |
+
"execution_count": 20,
|
728 |
+
"outputs": [
|
729 |
+
{
|
730 |
+
"output_type": "execute_result",
|
731 |
+
"data": {
|
732 |
+
"text/plain": [
|
733 |
+
"torch.Size([4, 8, 2])"
|
734 |
+
]
|
735 |
+
},
|
736 |
+
"metadata": {},
|
737 |
+
"execution_count": 20
|
738 |
+
}
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"cell_type": "code",
|
743 |
+
"source": [
|
744 |
+
"# We want x[b,t] = mean_{i<=t} x[b,i]\n",
|
745 |
+
"xbow = torch.zeros((B,T,C))\n",
|
746 |
+
"for b in range(B):\n",
|
747 |
+
" for t in range(T):\n",
|
748 |
+
" xprev = x[b,:t+1] # (t,C)\n",
|
749 |
+
" xbow[b,t] = torch.mean(xprev, 0)\n"
|
750 |
+
],
|
751 |
+
"metadata": {
|
752 |
+
"id": "86NuXX0fn7ps"
|
753 |
+
},
|
754 |
+
"execution_count": 21,
|
755 |
+
"outputs": []
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"cell_type": "code",
|
759 |
+
"source": [
|
760 |
+
"# version 2: using matrix multiply for a weighted aggregation\n",
|
761 |
+
"wei = torch.tril(torch.ones(T, T))\n",
|
762 |
+
"wei = wei / wei.sum(1, keepdim=True)\n",
|
763 |
+
"xbow2 = wei @ x # (B, T, T) @ (B, T, C) ----> (B, T, C)\n",
|
764 |
+
"torch.allclose(xbow, xbow2)"
|
765 |
+
],
|
766 |
+
"metadata": {
|
767 |
+
"colab": {
|
768 |
+
"base_uri": "https://localhost:8080/"
|
769 |
+
},
|
770 |
+
"id": "yhdOAd6-wXkZ",
|
771 |
+
"outputId": "c7313d9b-d406-46ce-e2cd-f28c10ef41c2"
|
772 |
+
},
|
773 |
+
"execution_count": 22,
|
774 |
+
"outputs": [
|
775 |
+
{
|
776 |
+
"output_type": "execute_result",
|
777 |
+
"data": {
|
778 |
+
"text/plain": [
|
779 |
+
"False"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
"metadata": {},
|
783 |
+
"execution_count": 22
|
784 |
+
}
|
785 |
+
]
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"cell_type": "code",
|
789 |
+
"source": [
|
790 |
+
"# version 3: use Softmax\n",
|
791 |
+
"tril = torch.tril(torch.ones(T, T))\n",
|
792 |
+
"wei = torch.zeros((T,T))\n",
|
793 |
+
"wei = wei.masked_fill(tril == 0, float('-inf'))\n",
|
794 |
+
"wei = F.softmax(wei, dim=-1)\n",
|
795 |
+
"xbow3 = wei @ x\n",
|
796 |
+
"torch.allclose(xbow, xbow3)\n"
|
797 |
+
],
|
798 |
+
"metadata": {
|
799 |
+
"colab": {
|
800 |
+
"base_uri": "https://localhost:8080/"
|
801 |
+
},
|
802 |
+
"id": "wOURrfG-ysoL",
|
803 |
+
"outputId": "40a4a993-5a9b-419c-e558-b935fd843dbf"
|
804 |
+
},
|
805 |
+
"execution_count": 23,
|
806 |
+
"outputs": [
|
807 |
+
{
|
808 |
+
"output_type": "execute_result",
|
809 |
+
"data": {
|
810 |
+
"text/plain": [
|
811 |
+
"False"
|
812 |
+
]
|
813 |
+
},
|
814 |
+
"metadata": {},
|
815 |
+
"execution_count": 23
|
816 |
+
}
|
817 |
+
]
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"cell_type": "code",
|
821 |
+
"source": [
|
822 |
+
"# version 4: self-attention!\n",
|
823 |
+
"torch.manual_seed(1337)\n",
|
824 |
+
"B,T,C = 4,8,32 # batch, time, channels\n",
|
825 |
+
"x = torch.randn(B,T,C)\n",
|
826 |
+
"\n",
|
827 |
+
"# let's see a single Head perform self-attention\n",
|
828 |
+
"head_size = 16\n",
|
829 |
+
"key = nn.Linear(C, head_size, bias=False)\n",
|
830 |
+
"query = nn.Linear(C, head_size, bias=False)\n",
|
831 |
+
"value = nn.Linear(C, head_size, bias=False)\n",
|
832 |
+
"k = key(x) # (B, T, 16)\n",
|
833 |
+
"q = query(x) # (B, T, 16)\n",
|
834 |
+
"wei = q @ k.transpose(-2, -1) # (B, T, 16) @ (B, 16, T) ---> (B, T, T)\n",
|
835 |
+
"\n",
|
836 |
+
"tril = torch.tril(torch.ones(T, T))\n",
|
837 |
+
"#wei = torch.zeros((T,T))\n",
|
838 |
+
"wei = wei.masked_fill(tril == 0, float('-inf'))\n",
|
839 |
+
"wei = F.softmax(wei, dim=-1)\n",
|
840 |
+
"\n",
|
841 |
+
"v = value(x)\n",
|
842 |
+
"out = wei @ v\n",
|
843 |
+
"#out = wei @ x\n",
|
844 |
+
"\n",
|
845 |
+
"out.shape"
|
846 |
+
],
|
847 |
+
"metadata": {
|
848 |
+
"colab": {
|
849 |
+
"base_uri": "https://localhost:8080/"
|
850 |
+
},
|
851 |
+
"id": "EDarxEWIRMKq",
|
852 |
+
"outputId": "6fee2aa4-4ab6-4d89-c8ca-7463ee54962b"
|
853 |
+
},
|
854 |
+
"execution_count": 24,
|
855 |
+
"outputs": [
|
856 |
+
{
|
857 |
+
"output_type": "execute_result",
|
858 |
+
"data": {
|
859 |
+
"text/plain": [
|
860 |
+
"torch.Size([4, 8, 16])"
|
861 |
+
]
|
862 |
+
},
|
863 |
+
"metadata": {},
|
864 |
+
"execution_count": 24
|
865 |
+
}
|
866 |
+
]
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"cell_type": "code",
|
870 |
+
"source": [
|
871 |
+
"wei[0]"
|
872 |
+
],
|
873 |
+
"metadata": {
|
874 |
+
"colab": {
|
875 |
+
"base_uri": "https://localhost:8080/"
|
876 |
+
},
|
877 |
+
"id": "vT1hdtzXCjgL",
|
878 |
+
"outputId": "c664020c-c9dd-4c85-84a4-fae0320453f8"
|
879 |
+
},
|
880 |
+
"execution_count": 25,
|
881 |
+
"outputs": [
|
882 |
+
{
|
883 |
+
"output_type": "execute_result",
|
884 |
+
"data": {
|
885 |
+
"text/plain": [
|
886 |
+
"tensor([[1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
887 |
+
" [0.1574, 0.8426, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
888 |
+
" [0.2088, 0.1646, 0.6266, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
889 |
+
" [0.5792, 0.1187, 0.1889, 0.1131, 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
890 |
+
" [0.0294, 0.1052, 0.0469, 0.0276, 0.7909, 0.0000, 0.0000, 0.0000],\n",
|
891 |
+
" [0.0176, 0.2689, 0.0215, 0.0089, 0.6812, 0.0019, 0.0000, 0.0000],\n",
|
892 |
+
" [0.1691, 0.4066, 0.0438, 0.0416, 0.1048, 0.2012, 0.0329, 0.0000],\n",
|
893 |
+
" [0.0210, 0.0843, 0.0555, 0.2297, 0.0573, 0.0709, 0.2423, 0.2391]],\n",
|
894 |
+
" grad_fn=<SelectBackward0>)"
|
895 |
+
]
|
896 |
+
},
|
897 |
+
"metadata": {},
|
898 |
+
"execution_count": 25
|
899 |
+
}
|
900 |
+
]
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"cell_type": "markdown",
|
904 |
+
"source": [
|
905 |
+
"Notes:\n",
|
906 |
+
"- Attention is a **communication mechanism**. Can be seen as nodes in a directed graph looking at each other and aggregating information with a weighted sum from all nodes that point to them, with data-dependent weights.\n",
|
907 |
+
"- There is no notion of space. Attention simply acts over a set of vectors. This is why we need to positionally encode tokens.\n",
|
908 |
+
"- Each example across batch dimension is of course processed completely independently and never \"talk\" to each other\n",
|
909 |
+
"- In an \"encoder\" attention block just delete the single line that does masking with `tril`, allowing all tokens to communicate. This block here is called a \"decoder\" attention block because it has triangular masking, and is usually used in autoregressive settings, like language modeling.\n",
|
910 |
+
"- \"self-attention\" just means that the keys and values are produced from the same source as queries. In \"cross-attention\", the queries still get produced from x, but the keys and values come from some other, external source (e.g. an encoder module)\n",
|
911 |
+
"- \"Scaled\" attention additional divides `wei` by 1/sqrt(head_size). This makes it so when input Q,K are unit variance, wei will be unit variance too and Softmax will stay diffuse and not saturate too much. Illustration below"
|
912 |
+
],
|
913 |
+
"metadata": {
|
914 |
+
"id": "M5CvobiQ0pLr"
|
915 |
+
}
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"cell_type": "code",
|
919 |
+
"source": [
|
920 |
+
"k = torch.randn(B,T,head_size)\n",
|
921 |
+
"q = torch.randn(B,T,head_size)\n",
|
922 |
+
"wei = q @ k.transpose(-2, -1) * head_size**-0.5"
|
923 |
+
],
|
924 |
+
"metadata": {
|
925 |
+
"id": "4SNbLq5z3oBw"
|
926 |
+
},
|
927 |
+
"execution_count": 26,
|
928 |
+
"outputs": []
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"cell_type": "code",
|
932 |
+
"source": [
|
933 |
+
"k.var()"
|
934 |
+
],
|
935 |
+
"metadata": {
|
936 |
+
"colab": {
|
937 |
+
"base_uri": "https://localhost:8080/"
|
938 |
+
},
|
939 |
+
"id": "Nl6I9n9IRTSo",
|
940 |
+
"outputId": "162aab09-b860-4b73-c0ae-394451367460"
|
941 |
+
},
|
942 |
+
"execution_count": 27,
|
943 |
+
"outputs": [
|
944 |
+
{
|
945 |
+
"output_type": "execute_result",
|
946 |
+
"data": {
|
947 |
+
"text/plain": [
|
948 |
+
"tensor(1.0449)"
|
949 |
+
]
|
950 |
+
},
|
951 |
+
"metadata": {},
|
952 |
+
"execution_count": 27
|
953 |
+
}
|
954 |
+
]
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"cell_type": "code",
|
958 |
+
"source": [
|
959 |
+
"q.var()"
|
960 |
+
],
|
961 |
+
"metadata": {
|
962 |
+
"colab": {
|
963 |
+
"base_uri": "https://localhost:8080/"
|
964 |
+
},
|
965 |
+
"id": "T1tQx7oeRvtc",
|
966 |
+
"outputId": "20aacd2d-d414-4268-981e-86a5fd8afcc8"
|
967 |
+
},
|
968 |
+
"execution_count": 28,
|
969 |
+
"outputs": [
|
970 |
+
{
|
971 |
+
"output_type": "execute_result",
|
972 |
+
"data": {
|
973 |
+
"text/plain": [
|
974 |
+
"tensor(1.0700)"
|
975 |
+
]
|
976 |
+
},
|
977 |
+
"metadata": {},
|
978 |
+
"execution_count": 28
|
979 |
+
}
|
980 |
+
]
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"cell_type": "code",
|
984 |
+
"source": [
|
985 |
+
"wei.var()"
|
986 |
+
],
|
987 |
+
"metadata": {
|
988 |
+
"colab": {
|
989 |
+
"base_uri": "https://localhost:8080/"
|
990 |
+
},
|
991 |
+
"id": "MLb_odHU3iKM",
|
992 |
+
"outputId": "5d6ca0fd-51df-42ec-daf8-7fb2ff9f640f"
|
993 |
+
},
|
994 |
+
"execution_count": 29,
|
995 |
+
"outputs": [
|
996 |
+
{
|
997 |
+
"output_type": "execute_result",
|
998 |
+
"data": {
|
999 |
+
"text/plain": [
|
1000 |
+
"tensor(1.0918)"
|
1001 |
+
]
|
1002 |
+
},
|
1003 |
+
"metadata": {},
|
1004 |
+
"execution_count": 29
|
1005 |
+
}
|
1006 |
+
]
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"cell_type": "code",
|
1010 |
+
"source": [
|
1011 |
+
"torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5]), dim=-1)"
|
1012 |
+
],
|
1013 |
+
"metadata": {
|
1014 |
+
"colab": {
|
1015 |
+
"base_uri": "https://localhost:8080/"
|
1016 |
+
},
|
1017 |
+
"id": "JB82yzt44REI",
|
1018 |
+
"outputId": "df0211e7-a2b0-46c7-9fd2-c5a8cc185ed7"
|
1019 |
+
},
|
1020 |
+
"execution_count": 30,
|
1021 |
+
"outputs": [
|
1022 |
+
{
|
1023 |
+
"output_type": "execute_result",
|
1024 |
+
"data": {
|
1025 |
+
"text/plain": [
|
1026 |
+
"tensor([0.1925, 0.1426, 0.2351, 0.1426, 0.2872])"
|
1027 |
+
]
|
1028 |
+
},
|
1029 |
+
"metadata": {},
|
1030 |
+
"execution_count": 30
|
1031 |
+
}
|
1032 |
+
]
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"cell_type": "code",
|
1036 |
+
"source": [
|
1037 |
+
"torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5])*8, dim=-1) # gets too peaky, converges to one-hot"
|
1038 |
+
],
|
1039 |
+
"metadata": {
|
1040 |
+
"colab": {
|
1041 |
+
"base_uri": "https://localhost:8080/"
|
1042 |
+
},
|
1043 |
+
"id": "Mpt8569BB9_f",
|
1044 |
+
"outputId": "cf991a1e-7072-4944-d578-886a270f57de"
|
1045 |
+
},
|
1046 |
+
"execution_count": 31,
|
1047 |
+
"outputs": [
|
1048 |
+
{
|
1049 |
+
"output_type": "execute_result",
|
1050 |
+
"data": {
|
1051 |
+
"text/plain": [
|
1052 |
+
"tensor([0.0326, 0.0030, 0.1615, 0.0030, 0.8000])"
|
1053 |
+
]
|
1054 |
+
},
|
1055 |
+
"metadata": {},
|
1056 |
+
"execution_count": 31
|
1057 |
+
}
|
1058 |
+
]
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"cell_type": "code",
|
1062 |
+
"source": [
|
1063 |
+
"class LayerNorm1d: # (used to be BatchNorm1d)\n",
|
1064 |
+
"\n",
|
1065 |
+
" def __init__(self, dim, eps=1e-5, momentum=0.1):\n",
|
1066 |
+
" self.eps = eps\n",
|
1067 |
+
" self.gamma = torch.ones(dim)\n",
|
1068 |
+
" self.beta = torch.zeros(dim)\n",
|
1069 |
+
"\n",
|
1070 |
+
" def __call__(self, x):\n",
|
1071 |
+
" # calculate the forward pass\n",
|
1072 |
+
" xmean = x.mean(1, keepdim=True) # batch mean\n",
|
1073 |
+
" xvar = x.var(1, keepdim=True) # batch variance\n",
|
1074 |
+
" xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unit variance\n",
|
1075 |
+
" self.out = self.gamma * xhat + self.beta\n",
|
1076 |
+
" return self.out\n",
|
1077 |
+
"\n",
|
1078 |
+
" def parameters(self):\n",
|
1079 |
+
" return [self.gamma, self.beta]\n",
|
1080 |
+
"\n",
|
1081 |
+
"torch.manual_seed(1337)\n",
|
1082 |
+
"module = LayerNorm1d(100)\n",
|
1083 |
+
"x = torch.randn(32, 100) # batch size 32 of 100-dimensional vectors\n",
|
1084 |
+
"x = module(x)\n",
|
1085 |
+
"x.shape"
|
1086 |
+
],
|
1087 |
+
"metadata": {
|
1088 |
+
"colab": {
|
1089 |
+
"base_uri": "https://localhost:8080/"
|
1090 |
+
},
|
1091 |
+
"id": "2Num7sX9CKOH",
|
1092 |
+
"outputId": "14c48660-c741-4cb8-ac79-53d2bf094a63"
|
1093 |
+
},
|
1094 |
+
"execution_count": 32,
|
1095 |
+
"outputs": [
|
1096 |
+
{
|
1097 |
+
"output_type": "execute_result",
|
1098 |
+
"data": {
|
1099 |
+
"text/plain": [
|
1100 |
+
"torch.Size([32, 100])"
|
1101 |
+
]
|
1102 |
+
},
|
1103 |
+
"metadata": {},
|
1104 |
+
"execution_count": 32
|
1105 |
+
}
|
1106 |
+
]
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"cell_type": "code",
|
1110 |
+
"source": [
|
1111 |
+
"x[:,0].mean(), x[:,0].std() # mean,std of one feature across all batch inputs"
|
1112 |
+
],
|
1113 |
+
"metadata": {
|
1114 |
+
"colab": {
|
1115 |
+
"base_uri": "https://localhost:8080/"
|
1116 |
+
},
|
1117 |
+
"id": "633T2cmnW1uk",
|
1118 |
+
"outputId": "2a6e887c-6b82-454f-8f32-aefde73777c5"
|
1119 |
+
},
|
1120 |
+
"execution_count": 33,
|
1121 |
+
"outputs": [
|
1122 |
+
{
|
1123 |
+
"output_type": "execute_result",
|
1124 |
+
"data": {
|
1125 |
+
"text/plain": [
|
1126 |
+
"(tensor(0.1469), tensor(0.8803))"
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
"metadata": {},
|
1130 |
+
"execution_count": 33
|
1131 |
+
}
|
1132 |
+
]
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"cell_type": "code",
|
1136 |
+
"source": [
|
1137 |
+
"x[0,:].mean(), x[0,:].std() # mean,std of a single input from the batch, of its features"
|
1138 |
+
],
|
1139 |
+
"metadata": {
|
1140 |
+
"colab": {
|
1141 |
+
"base_uri": "https://localhost:8080/"
|
1142 |
+
},
|
1143 |
+
"id": "LN9cK9BoXCYb",
|
1144 |
+
"outputId": "4c81f68e-b1d2-4a04-d38d-09583f104ea7"
|
1145 |
+
},
|
1146 |
+
"execution_count": 34,
|
1147 |
+
"outputs": [
|
1148 |
+
{
|
1149 |
+
"output_type": "execute_result",
|
1150 |
+
"data": {
|
1151 |
+
"text/plain": [
|
1152 |
+
"(tensor(-9.5367e-09), tensor(1.0000))"
|
1153 |
+
]
|
1154 |
+
},
|
1155 |
+
"metadata": {},
|
1156 |
+
"execution_count": 34
|
1157 |
+
}
|
1158 |
+
]
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"cell_type": "code",
|
1162 |
+
"source": [
|
1163 |
+
"# French to English translation example:\n",
|
1164 |
+
"\n",
|
1165 |
+
"# <--------- ENCODE ------------------><--------------- DECODE ----------------->\n",
|
1166 |
+
"# les réseaux de neurones sont géniaux! <START> neural networks are awesome!<END>\n",
|
1167 |
+
"\n"
|
1168 |
+
],
|
1169 |
+
"metadata": {
|
1170 |
+
"id": "dRJH6wM_XFfU"
|
1171 |
+
},
|
1172 |
+
"execution_count": 35,
|
1173 |
+
"outputs": []
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"cell_type": "markdown",
|
1177 |
+
"source": [
|
1178 |
+
"### Full finished code, for reference\n",
|
1179 |
+
"\n",
|
1180 |
+
"You may want to refer directly to the git repo instead though."
|
1181 |
+
],
|
1182 |
+
"metadata": {
|
1183 |
+
"id": "ZcvKeBXoZFOY"
|
1184 |
+
}
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"cell_type": "code",
|
1188 |
+
"source": [
|
1189 |
+
"import torch\n",
|
1190 |
+
"import torch.nn as nn\n",
|
1191 |
+
"from torch.nn import functional as F\n",
|
1192 |
+
"\n",
|
1193 |
+
"# hyperparameters\n",
|
1194 |
+
"batch_size = 16 # how many independent sequences will we process in parallel?\n",
|
1195 |
+
"block_size = 32 # what is the maximum context length for predictions?\n",
|
1196 |
+
"max_iters = 5000\n",
|
1197 |
+
"#00\n",
|
1198 |
+
"eval_interval = 100\n",
|
1199 |
+
"learning_rate = 1e-3\n",
|
1200 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
1201 |
+
"eval_iters = 200\n",
|
1202 |
+
"n_embd = 64\n",
|
1203 |
+
"n_head = 4\n",
|
1204 |
+
"n_layer = 4\n",
|
1205 |
+
"dropout = 0.0\n",
|
1206 |
+
"# ------------\n",
|
1207 |
+
"\n",
|
1208 |
+
"torch.manual_seed(1337)\n",
|
1209 |
+
"\n",
|
1210 |
+
"# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\n",
|
1211 |
+
"with open('input.txt', 'r', encoding='utf-8') as f:\n",
|
1212 |
+
" text = f.read()\n",
|
1213 |
+
"\n",
|
1214 |
+
"# here are all the unique characters that occur in this text\n",
|
1215 |
+
"chars = sorted(list(set(text)))\n",
|
1216 |
+
"vocab_size = len(chars)\n",
|
1217 |
+
"# create a mapping from characters to integers\n",
|
1218 |
+
"stoi = { ch:i for i,ch in enumerate(chars) }\n",
|
1219 |
+
"itos = { i:ch for i,ch in enumerate(chars) }\n",
|
1220 |
+
"encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers\n",
|
1221 |
+
"decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string\n",
|
1222 |
+
"\n",
|
1223 |
+
"# Train and test splits\n",
|
1224 |
+
"data = torch.tensor(encode(text), dtype=torch.long)\n",
|
1225 |
+
"n = int(0.9*len(data)) # first 90% will be train, rest val\n",
|
1226 |
+
"train_data = data[:n]\n",
|
1227 |
+
"val_data = data[n:]\n",
|
1228 |
+
"\n",
|
1229 |
+
"# data loading\n",
|
1230 |
+
"def get_batch(split):\n",
|
1231 |
+
" # generate a small batch of data of inputs x and targets y\n",
|
1232 |
+
" data = train_data if split == 'train' else val_data\n",
|
1233 |
+
" ix = torch.randint(len(data) - block_size, (batch_size,))\n",
|
1234 |
+
" x = torch.stack([data[i:i+block_size] for i in ix])\n",
|
1235 |
+
" y = torch.stack([data[i+1:i+block_size+1] for i in ix])\n",
|
1236 |
+
" x, y = x.to(device), y.to(device)\n",
|
1237 |
+
" return x, y\n",
|
1238 |
+
"\n",
|
1239 |
+
"@torch.no_grad()\n",
|
1240 |
+
"def estimate_loss():\n",
|
1241 |
+
" out = {}\n",
|
1242 |
+
" model.eval()\n",
|
1243 |
+
" for split in ['train', 'val']:\n",
|
1244 |
+
" losses = torch.zeros(eval_iters)\n",
|
1245 |
+
" for k in range(eval_iters):\n",
|
1246 |
+
" X, Y = get_batch(split)\n",
|
1247 |
+
" logits, loss = model(X, Y)\n",
|
1248 |
+
" losses[k] = loss.item()\n",
|
1249 |
+
" out[split] = losses.mean()\n",
|
1250 |
+
" model.train()\n",
|
1251 |
+
" return out\n",
|
1252 |
+
"\n",
|
1253 |
+
"class Head(nn.Module):\n",
|
1254 |
+
" \"\"\" one head of self-attention \"\"\"\n",
|
1255 |
+
"\n",
|
1256 |
+
" def __init__(self, head_size):\n",
|
1257 |
+
" super().__init__()\n",
|
1258 |
+
" self.key = nn.Linear(n_embd, head_size, bias=False)\n",
|
1259 |
+
" self.query = nn.Linear(n_embd, head_size, bias=False)\n",
|
1260 |
+
" self.value = nn.Linear(n_embd, head_size, bias=False)\n",
|
1261 |
+
" self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))\n",
|
1262 |
+
"\n",
|
1263 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
1264 |
+
"\n",
|
1265 |
+
" def forward(self, x):\n",
|
1266 |
+
" B,T,C = x.shape\n",
|
1267 |
+
" k = self.key(x) # (B,T,C)\n",
|
1268 |
+
" q = self.query(x) # (B,T,C)\n",
|
1269 |
+
" # compute attention scores (\"affinities\")\n",
|
1270 |
+
" wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)\n",
|
1271 |
+
" wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)\n",
|
1272 |
+
" wei = F.softmax(wei, dim=-1) # (B, T, T)\n",
|
1273 |
+
" wei = self.dropout(wei)\n",
|
1274 |
+
" # perform the weighted aggregation of the values\n",
|
1275 |
+
" v = self.value(x) # (B,T,C)\n",
|
1276 |
+
" out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)\n",
|
1277 |
+
" return out\n",
|
1278 |
+
"\n",
|
1279 |
+
"class MultiHeadAttention(nn.Module):\n",
|
1280 |
+
" \"\"\" multiple heads of self-attention in parallel \"\"\"\n",
|
1281 |
+
"\n",
|
1282 |
+
" def __init__(self, num_heads, head_size):\n",
|
1283 |
+
" super().__init__()\n",
|
1284 |
+
" self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])\n",
|
1285 |
+
" self.proj = nn.Linear(n_embd, n_embd)\n",
|
1286 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
1287 |
+
"\n",
|
1288 |
+
" def forward(self, x):\n",
|
1289 |
+
" out = torch.cat([h(x) for h in self.heads], dim=-1)\n",
|
1290 |
+
" out = self.dropout(self.proj(out))\n",
|
1291 |
+
" return out\n",
|
1292 |
+
"\n",
|
1293 |
+
"class FeedFoward(nn.Module):\n",
|
1294 |
+
" \"\"\" a simple linear layer followed by a non-linearity \"\"\"\n",
|
1295 |
+
"\n",
|
1296 |
+
" def __init__(self, n_embd):\n",
|
1297 |
+
" super().__init__()\n",
|
1298 |
+
" self.net = nn.Sequential(\n",
|
1299 |
+
" nn.Linear(n_embd, 4 * n_embd),\n",
|
1300 |
+
" nn.ReLU(),\n",
|
1301 |
+
" nn.Linear(4 * n_embd, n_embd),\n",
|
1302 |
+
" nn.Dropout(dropout),\n",
|
1303 |
+
" )\n",
|
1304 |
+
"\n",
|
1305 |
+
" def forward(self, x):\n",
|
1306 |
+
" return self.net(x)\n",
|
1307 |
+
"\n",
|
1308 |
+
"class Block(nn.Module):\n",
|
1309 |
+
" \"\"\" Transformer block: communication followed by computation \"\"\"\n",
|
1310 |
+
"\n",
|
1311 |
+
" def __init__(self, n_embd, n_head):\n",
|
1312 |
+
" # n_embd: embedding dimension, n_head: the number of heads we'd like\n",
|
1313 |
+
" super().__init__()\n",
|
1314 |
+
" head_size = n_embd // n_head\n",
|
1315 |
+
" self.sa = MultiHeadAttention(n_head, head_size)\n",
|
1316 |
+
" self.ffwd = FeedFoward(n_embd)\n",
|
1317 |
+
" self.ln1 = nn.LayerNorm(n_embd)\n",
|
1318 |
+
" self.ln2 = nn.LayerNorm(n_embd)\n",
|
1319 |
+
"\n",
|
1320 |
+
" def forward(self, x):\n",
|
1321 |
+
" x = x + self.sa(self.ln1(x))\n",
|
1322 |
+
" x = x + self.ffwd(self.ln2(x))\n",
|
1323 |
+
" return x\n",
|
1324 |
+
"\n",
|
1325 |
+
"# super simple bigram model\n",
|
1326 |
+
"class BigramLanguageModel(nn.Module):\n",
|
1327 |
+
"\n",
|
1328 |
+
" def __init__(self):\n",
|
1329 |
+
" super().__init__()\n",
|
1330 |
+
" # each token directly reads off the logits for the next token from a lookup table\n",
|
1331 |
+
" self.token_embedding_table = nn.Embedding(vocab_size, n_embd)\n",
|
1332 |
+
" self.position_embedding_table = nn.Embedding(block_size, n_embd)\n",
|
1333 |
+
" self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])\n",
|
1334 |
+
" self.ln_f = nn.LayerNorm(n_embd) # final layer norm\n",
|
1335 |
+
" self.lm_head = nn.Linear(n_embd, vocab_size)\n",
|
1336 |
+
"\n",
|
1337 |
+
" def forward(self, idx, targets=None):\n",
|
1338 |
+
" B, T = idx.shape\n",
|
1339 |
+
"\n",
|
1340 |
+
" # idx and targets are both (B,T) tensor of integers\n",
|
1341 |
+
" tok_emb = self.token_embedding_table(idx) # (B,T,C)\n",
|
1342 |
+
" pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)\n",
|
1343 |
+
" x = tok_emb + pos_emb # (B,T,C)\n",
|
1344 |
+
" x = self.blocks(x) # (B,T,C)\n",
|
1345 |
+
" x = self.ln_f(x) # (B,T,C)\n",
|
1346 |
+
" logits = self.lm_head(x) # (B,T,vocab_size)\n",
|
1347 |
+
"\n",
|
1348 |
+
" if targets is None:\n",
|
1349 |
+
" loss = None\n",
|
1350 |
+
" else:\n",
|
1351 |
+
" B, T, C = logits.shape\n",
|
1352 |
+
" logits = logits.view(B*T, C)\n",
|
1353 |
+
" targets = targets.view(B*T)\n",
|
1354 |
+
" loss = F.cross_entropy(logits, targets)\n",
|
1355 |
+
"\n",
|
1356 |
+
" return logits, loss\n",
|
1357 |
+
"\n",
|
1358 |
+
" def generate(self, idx, max_new_tokens):\n",
|
1359 |
+
" # idx is (B, T) array of indices in the current context\n",
|
1360 |
+
" for _ in range(max_new_tokens):\n",
|
1361 |
+
" # crop idx to the last block_size tokens\n",
|
1362 |
+
" idx_cond = idx[:, -block_size:]\n",
|
1363 |
+
" # get the predictions\n",
|
1364 |
+
" logits, loss = self(idx_cond)\n",
|
1365 |
+
" # focus only on the last time step\n",
|
1366 |
+
" logits = logits[:, -1, :] # becomes (B, C)\n",
|
1367 |
+
" # apply softmax to get probabilities\n",
|
1368 |
+
" probs = F.softmax(logits, dim=-1) # (B, C)\n",
|
1369 |
+
" # sample from the distribution\n",
|
1370 |
+
" idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)\n",
|
1371 |
+
" # append sampled index to the running sequence\n",
|
1372 |
+
" idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)\n",
|
1373 |
+
" return idx\n",
|
1374 |
+
"\n",
|
1375 |
+
"model = BigramLanguageModel()\n",
|
1376 |
+
"m = model.to(device)\n",
|
1377 |
+
"# print the number of parameters in the model\n",
|
1378 |
+
"print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')\n",
|
1379 |
+
"\n",
|
1380 |
+
"# create a PyTorch optimizer\n",
|
1381 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)\n",
|
1382 |
+
"\n",
|
1383 |
+
"for iter in range(max_iters):\n",
|
1384 |
+
"\n",
|
1385 |
+
" # every once in a while evaluate the loss on train and val sets\n",
|
1386 |
+
" if iter % eval_interval == 0 or iter == max_iters - 1:\n",
|
1387 |
+
" losses = estimate_loss()\n",
|
1388 |
+
" print(f\"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}\")\n",
|
1389 |
+
"\n",
|
1390 |
+
" # sample a batch of data\n",
|
1391 |
+
" xb, yb = get_batch('train')\n",
|
1392 |
+
"\n",
|
1393 |
+
" # evaluate the loss\n",
|
1394 |
+
" logits, loss = model(xb, yb)\n",
|
1395 |
+
" optimizer.zero_grad(set_to_none=True)\n",
|
1396 |
+
" loss.backward()\n",
|
1397 |
+
" optimizer.step()\n",
|
1398 |
+
"\n",
|
1399 |
+
"# generate from the model\n",
|
1400 |
+
"context = torch.zeros((1, 1), dtype=torch.long, device=device)\n",
|
1401 |
+
"print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))\n"
|
1402 |
+
],
|
1403 |
+
"metadata": {
|
1404 |
+
"colab": {
|
1405 |
+
"base_uri": "https://localhost:8080/"
|
1406 |
+
},
|
1407 |
+
"id": "hoelkOrFY8bN",
|
1408 |
+
"outputId": "4f7e6e13-879e-469d-dcdb-0d3c48e263c5"
|
1409 |
+
},
|
1410 |
+
"execution_count": 37,
|
1411 |
+
"outputs": [
|
1412 |
+
{
|
1413 |
+
"output_type": "stream",
|
1414 |
+
"name": "stdout",
|
1415 |
+
"text": [
|
1416 |
+
"0.209729 M parameters\n",
|
1417 |
+
"step 0: train loss 4.4116, val loss 4.4022\n",
|
1418 |
+
"step 100: train loss 2.6568, val loss 2.6670\n",
|
1419 |
+
"step 200: train loss 2.5090, val loss 2.5059\n",
|
1420 |
+
"step 300: train loss 2.4196, val loss 2.4338\n",
|
1421 |
+
"step 400: train loss 2.3504, val loss 2.3566\n",
|
1422 |
+
"step 500: train loss 2.2965, val loss 2.3129\n",
|
1423 |
+
"step 600: train loss 2.2410, val loss 2.2500\n",
|
1424 |
+
"step 700: train loss 2.2057, val loss 2.2191\n",
|
1425 |
+
"step 800: train loss 2.1633, val loss 2.1864\n",
|
1426 |
+
"step 900: train loss 2.1244, val loss 2.1510\n",
|
1427 |
+
"step 1000: train loss 2.1038, val loss 2.1308\n",
|
1428 |
+
"step 1100: train loss 2.0707, val loss 2.1197\n",
|
1429 |
+
"step 1200: train loss 2.0377, val loss 2.0800\n",
|
1430 |
+
"step 1300: train loss 2.0268, val loss 2.0650\n",
|
1431 |
+
"step 1400: train loss 1.9918, val loss 2.0356\n",
|
1432 |
+
"step 1500: train loss 1.9697, val loss 2.0293\n",
|
1433 |
+
"step 1600: train loss 1.9645, val loss 2.0499\n",
|
1434 |
+
"step 1700: train loss 1.9404, val loss 2.0129\n",
|
1435 |
+
"step 1800: train loss 1.9095, val loss 1.9951\n",
|
1436 |
+
"step 1900: train loss 1.9067, val loss 1.9855\n",
|
1437 |
+
"step 2000: train loss 1.8854, val loss 1.9948\n",
|
1438 |
+
"step 2100: train loss 1.8727, val loss 1.9766\n",
|
1439 |
+
"step 2200: train loss 1.8597, val loss 1.9631\n",
|
1440 |
+
"step 2300: train loss 1.8530, val loss 1.9516\n",
|
1441 |
+
"step 2400: train loss 1.8428, val loss 1.9464\n",
|
1442 |
+
"step 2500: train loss 1.8161, val loss 1.9424\n",
|
1443 |
+
"step 2600: train loss 1.8283, val loss 1.9406\n",
|
1444 |
+
"step 2700: train loss 1.8101, val loss 1.9322\n",
|
1445 |
+
"step 2800: train loss 1.8050, val loss 1.9233\n",
|
1446 |
+
"step 2900: train loss 1.8033, val loss 1.9289\n",
|
1447 |
+
"step 3000: train loss 1.7955, val loss 1.9216\n",
|
1448 |
+
"step 3100: train loss 1.7697, val loss 1.9184\n",
|
1449 |
+
"step 3200: train loss 1.7541, val loss 1.9088\n",
|
1450 |
+
"step 3300: train loss 1.7567, val loss 1.9034\n",
|
1451 |
+
"step 3400: train loss 1.7573, val loss 1.9000\n",
|
1452 |
+
"step 3500: train loss 1.7398, val loss 1.8925\n",
|
1453 |
+
"step 3600: train loss 1.7270, val loss 1.8869\n",
|
1454 |
+
"step 3700: train loss 1.7283, val loss 1.8814\n",
|
1455 |
+
"step 3800: train loss 1.7210, val loss 1.8918\n",
|
1456 |
+
"step 3900: train loss 1.7219, val loss 1.8732\n",
|
1457 |
+
"step 4000: train loss 1.7146, val loss 1.8576\n",
|
1458 |
+
"step 4100: train loss 1.7136, val loss 1.8720\n",
|
1459 |
+
"step 4200: train loss 1.7060, val loss 1.8653\n",
|
1460 |
+
"step 4300: train loss 1.7032, val loss 1.8499\n",
|
1461 |
+
"step 4400: train loss 1.7057, val loss 1.8656\n",
|
1462 |
+
"step 4500: train loss 1.6907, val loss 1.8477\n",
|
1463 |
+
"step 4600: train loss 1.6878, val loss 1.8371\n",
|
1464 |
+
"step 4700: train loss 1.6808, val loss 1.8415\n",
|
1465 |
+
"step 4800: train loss 1.6689, val loss 1.8457\n",
|
1466 |
+
"step 4900: train loss 1.6716, val loss 1.8415\n",
|
1467 |
+
"step 4999: train loss 1.6658, val loss 1.8275\n",
|
1468 |
+
"\n",
|
1469 |
+
"ROTCUMER:\n",
|
1470 |
+
"Tyburforth, bloody,\n",
|
1471 |
+
"WhIs migute: you duke I use list. WIthon of where's grande will! savist tought!\n",
|
1472 |
+
"Why room upwor alond, liegle. I hone, Iell thou sudd have then strue thus mind,\n",
|
1473 |
+
"His by blow, Virdom tow, glingien, yithre spees ssince them Those not.\n",
|
1474 |
+
"\n",
|
1475 |
+
"LUCIO:\n",
|
1476 |
+
"Look,----\n",
|
1477 |
+
"But thou sging them this my freceimmsed,\n",
|
1478 |
+
"By thou sovor conursion that thou sade but grove\n",
|
1479 |
+
"the tage encond:\n",
|
1480 |
+
"It will Rament me; an your touther,\n",
|
1481 |
+
"And havis like to-does, and little spright.\n",
|
1482 |
+
"\n",
|
1483 |
+
"GLOUCESTER:\n",
|
1484 |
+
"Rewards thou for Panfessira's bigguards such ways!\n",
|
1485 |
+
"What curfort his\n",
|
1486 |
+
"will havolss you, as I have the cervirs arled,\n",
|
1487 |
+
"Dear my love and pitace unto duly son.\n",
|
1488 |
+
"\n",
|
1489 |
+
"Secome:\n",
|
1490 |
+
"Offolk, even thy whose my late all that you by jotly us belies!\n",
|
1491 |
+
"Lord, we a-montencry! I\n",
|
1492 |
+
"\n",
|
1493 |
+
"SLARNE:\n",
|
1494 |
+
"Day, mave from out prrive And orculing\n",
|
1495 |
+
"What confess, temimelyour and stropt;\n",
|
1496 |
+
"Secumfospet the gatieus I'll that confence-sting,\n",
|
1497 |
+
"But; man't, Rolget\n",
|
1498 |
+
"would garnion'd live in which, you, prothre?\n",
|
1499 |
+
"\n",
|
1500 |
+
"CORIOLANUS:\n",
|
1501 |
+
"What bonum stravoing, not out be seemmed with\n",
|
1502 |
+
"That the boly noll to.\n",
|
1503 |
+
"Bently, which in on my not tomberven why, fortune,\n",
|
1504 |
+
"And that wark you, banot thus orl'ld groves viles.\n",
|
1505 |
+
"\n",
|
1506 |
+
"PUMNIUS:\n",
|
1507 |
+
"It thou addow less, proth-straing.\n",
|
1508 |
+
"Mutwing your contrant stomfe, whom they\n",
|
1509 |
+
"is by this famestle; and of the loves my not Mercarcious to the stord; thesoo, in thus my nome are:\n",
|
1510 |
+
"Will fuch, have there enplience your gone, ho's,\n",
|
1511 |
+
"And gentleman, my beged lind to be am\n",
|
1512 |
+
"in That ant:\n",
|
1513 |
+
"In I sugner murded! I play's,\n",
|
1514 |
+
"If not sume the confity will reasur slord:\n",
|
1515 |
+
"That get because at that his say\n",
|
1516 |
+
"and to beepts guarst you lom if then.\n",
|
1517 |
+
"\n",
|
1518 |
+
"MENEN MARGARUS:\n",
|
1519 |
+
"I but aftelence! made yoour never.\n",
|
1520 |
+
"\n",
|
1521 |
+
"KING RICHARD II:\n",
|
1522 |
+
"Who too near?\n",
|
1523 |
+
"\n",
|
1524 |
+
"LORDIUS:\n",
|
1525 |
+
"Or as madaw brird, tou thee?\n",
|
1526 |
+
"\n",
|
1527 |
+
"Sirightly the haste's beforempt.\n",
|
1528 |
+
"\n",
|
1529 |
+
"First:\n",
|
1530 |
+
"Is though.\n",
|
1531 |
+
"Fell, whose toes with requmpts, up I make\n",
|
1532 |
+
"Here figUS verean that I will, by the wateon.\n",
|
1533 |
+
"\n",
|
1534 |
+
"MOWIDIUS:\n",
|
1535 |
+
"How, while, more is in meep.\n",
|
1536 |
+
"twan be the fless this countrens platcar merperter sure make Giventled,\n",
|
1537 |
+
"At not your must to reason togs,\n",
|
1538 |
+
"And what you gue;--\n",
|
1539 |
+
"\n",
|
1540 |
+
"RUKE ESFiren; gravent,\n",
|
1541 |
+
"Apol\n"
|
1542 |
+
]
|
1543 |
+
}
|
1544 |
+
]
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"cell_type": "code",
|
1548 |
+
"source": [],
|
1549 |
+
"metadata": {
|
1550 |
+
"id": "fjjvMifYZf7x"
|
1551 |
+
},
|
1552 |
+
"execution_count": 36,
|
1553 |
+
"outputs": []
|
1554 |
+
}
|
1555 |
+
]
|
1556 |
+
}
|