""" ein notation: b - batch n - sequence nt - text sequence nw - raw wave length d - dimension """ from __future__ import annotations import torch from torch import nn import torch import torch.nn.functional as F from x_transformers.x_transformers import RotaryEmbedding from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding from transformers.models.llama import LlamaConfig from torch.utils.checkpoint import checkpoint from diffrhythm.model.modules import ( TimestepEmbedding, ConvNeXtV2Block, ConvPositionEmbedding, DiTBlock, AdaLayerNormZero_Final, precompute_freqs_cis, get_pos_embed_indices, ) # from liger_kernel.transformers import apply_liger_kernel_to_llama # apply_liger_kernel_to_llama() # Text embedding class TextEmbedding(nn.Module): def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2): super().__init__() self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token if conv_layers > 0: self.extra_modeling = True self.precompute_max_pos = 4096 # ~44s of 24khz audio self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) self.text_blocks = nn.Sequential( *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)] ) else: self.extra_modeling = False def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 #text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() #text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens batch, text_len = text.shape[0], text.shape[1] #text = F.pad(text, (0, seq_len - text_len), value=0) if drop_text: # cfg for text text = torch.zeros_like(text) text = self.text_embed(text) # b n -> b n d # possible extra modeling if self.extra_modeling: # sinus pos emb batch_start = torch.zeros((batch,), dtype=torch.long) pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) text_pos_embed = self.freqs_cis[pos_idx] text = text + text_pos_embed # convnextv2 blocks text = self.text_blocks(text) return text # noised input audio and context mixing embedding class InputEmbedding(nn.Module): def __init__(self, mel_dim, text_dim, out_dim, cond_dim): super().__init__() self.proj = nn.Linear(mel_dim * 2 + text_dim + cond_dim * 2, out_dim) self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False): # noqa: F722 if drop_audio_cond: # cfg for cond audio cond = torch.zeros_like(cond) style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1) time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1) # print(x.shape, cond.shape, text_embed.shape, style_emb.shape, time_emb.shape) x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1)) x = self.conv_pos_embed(x) + x return x # Transformer backbone using DiT blocks class DiT(nn.Module): def __init__( self, *, dim, depth=8, heads=8, dim_head=64, dropout=0.1, ff_mult=4, mel_dim=100, text_num_embeds=256, text_dim=None, conv_layers=0, long_skip_connection=False, use_style_prompt=False ): super().__init__() cond_dim = 512 self.time_embed = TimestepEmbedding(cond_dim) self.start_time_embed = TimestepEmbedding(cond_dim) if text_dim is None: text_dim = mel_dim self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers) self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim) #self.rotary_embed = RotaryEmbedding(dim_head) self.dim = dim self.depth = depth #self.transformer_blocks = nn.ModuleList( # [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout, use_style_prompt=use_style_prompt) for _ in range(depth)] #) llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu') llama_config._attn_implementation = 'sdpa' #llama_config._attn_implementation = '' self.transformer_blocks = nn.ModuleList( [LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)] ) self.rotary_emb = LlamaRotaryEmbedding(config=llama_config) self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None self.text_fusion_linears = nn.ModuleList( [ nn.Sequential( nn.Linear(cond_dim, dim), nn.SiLU() ) for i in range(depth // 2) ] ) for layer in self.text_fusion_linears: for p in layer.parameters(): p.detach().zero_() self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation self.proj_out = nn.Linear(dim, mel_dim) # if use_style_prompt: # self.prompt_rnn = nn.LSTM(64, cond_dim, 1, batch_first=True) def forward_timestep_invariant(self, text, seq_len, drop_text, start_time): s_t = self.start_time_embed(start_time) text_embed = self.text_embed(text, seq_len, drop_text=drop_text) text_residuals = [] for layer in self.text_fusion_linears: text_residual = layer(text_embed) text_residuals.append(text_residual) return s_t, text_embed, text_residuals def forward( self, x: float["b n d"], # nosied input audio # noqa: F722 text_embed: int["b nt"], # text # noqa: F722 text_residuals, cond: float["b n d"], # masked cond audio # noqa: F722 time: float["b"] | float[""], # time step # noqa: F821 F722 drop_audio_cond, # cfg for cond audio drop_prompt=False, style_prompt=None, # [b d t] start_time=None, ): batch, seq_len = x.shape[0], x.shape[1] if time.ndim == 0: time = time.repeat(batch) t = self.time_embed(time) c = t + start_time if drop_prompt: style_prompt = torch.zeros_like(style_prompt) style_embed = style_prompt # [b, 512] x = self.input_embed(x, cond, text_embed, style_embed, c, drop_audio_cond=drop_audio_cond) if self.long_skip_connection is not None: residual = x pos_ids = torch.arange(x.shape[1], device=x.device) pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1) rotary_embed = self.rotary_emb(x, pos_ids) for i, block in enumerate(self.transformer_blocks): x, *_ = block(x, position_embeddings=rotary_embed) if i < self.depth // 2: x = x + text_residuals[i] if self.long_skip_connection is not None: x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) x = self.norm_out(x, c) output = self.proj_out(x) return output