ing0 commited on
Commit
f401ec4
·
1 Parent(s): 7efdfc6
Files changed (2) hide show
  1. app.py +5 -5
  2. requirements.txt +1 -2
app.py CHANGED
@@ -51,7 +51,7 @@ def infer_music(lrc, ref_audio_path, steps, max_frames=2048, device='cuda'):
51
 
52
  def R1_infer1(theme, tags_gen, language):
53
  try:
54
- client = OpenAI(api_key=os.getenv('DP_API'), base_url="https://api.deepseek.com")
55
 
56
  llm_prompt = """
57
  请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
@@ -66,7 +66,7 @@ def R1_infer1(theme, tags_gen, language):
66
  """
67
 
68
  response = client.chat.completions.create(
69
- model='deepseek-reasoner',
70
  messages=[
71
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
72
  {"role": "user", "content": llm_prompt.format(theme=theme, tags=tags_gen, language=language)},
@@ -85,14 +85,14 @@ def R1_infer1(theme, tags_gen, language):
85
 
86
 
87
  def R1_infer2(tags_lyrics, lyrics_input):
88
- client = OpenAI(api_key=os.getenv('DP_API'), base_url="https://api.deepseek.com")
89
 
90
  llm_prompt = """
91
  {lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
92
  """
93
 
94
  response = client.chat.completions.create(
95
- model='deepseek-reasoner',
96
  messages=[
97
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
98
  {"role": "user", "content": llm_prompt.format(lyrics_input=lyrics_input, tags_lyrics=tags_lyrics)},
@@ -128,7 +128,7 @@ with gr.Blocks(css=css) as demo:
128
  gr.Markdown("<h1 style='text-align: center'>DiffRhythm (谛韵)</h1>")
129
  gr.HTML("""
130
  <div style="display:flex; justify-content: center; column-gap:4px;">
131
- <a href="https://github.com/ASLP-lab/DiffRhythm">
132
  <img src='https://img.shields.io/badge/Arxiv-Paper-blue'>
133
  </a>
134
  <a href="https://github.com/ASLP-lab/DiffRhythm">
 
51
 
52
  def R1_infer1(theme, tags_gen, language):
53
  try:
54
+ client = OpenAI(api_key=os.getenv('HS_DP_API'), base_url = "https://ark.cn-beijing.volces.com/api/v3")
55
 
56
  llm_prompt = """
57
  请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
 
66
  """
67
 
68
  response = client.chat.completions.create(
69
+ model="ep-20250304144033-nr9wl",
70
  messages=[
71
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
72
  {"role": "user", "content": llm_prompt.format(theme=theme, tags=tags_gen, language=language)},
 
85
 
86
 
87
  def R1_infer2(tags_lyrics, lyrics_input):
88
+ client = OpenAI(api_key=os.getenv('HS_DP_API'), base_url = "https://ark.cn-beijing.volces.com/api/v3")
89
 
90
  llm_prompt = """
91
  {lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
92
  """
93
 
94
  response = client.chat.completions.create(
95
+ model="ep-20250304144033-nr9wl",
96
  messages=[
97
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
98
  {"role": "user", "content": llm_prompt.format(lyrics_input=lyrics_input, tags_lyrics=tags_lyrics)},
 
128
  gr.Markdown("<h1 style='text-align: center'>DiffRhythm (谛韵)</h1>")
129
  gr.HTML("""
130
  <div style="display:flex; justify-content: center; column-gap:4px;">
131
+ <a href="https://arxiv.org/abs/2503.01183">
132
  <img src='https://img.shields.io/badge/Arxiv-Paper-blue'>
133
  </a>
134
  <a href="https://github.com/ASLP-lab/DiffRhythm">
requirements.txt CHANGED
@@ -30,5 +30,4 @@ einops==0.8.1
30
  lazy_loader==0.4
31
  scipy==1.15.2
32
  ftfy==6.3.1
33
- torchdiffeq==0.2.5
34
- https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
 
30
  lazy_loader==0.4
31
  scipy==1.15.2
32
  ftfy==6.3.1
33
+ torchdiffeq==0.2.5