Spaces:
Running
on
Zero
Running
on
Zero
test mp3
Browse files- app.py +5 -5
- diffrhythm/infer/infer.py +14 -5
- diffrhythm/infer/infer_utils.py +0 -3
app.py
CHANGED
@@ -54,14 +54,14 @@ def R1_infer1(theme, tags_gen, language):
|
|
54 |
client = OpenAI(api_key=os.getenv('HS_DP_API'), base_url = "https://ark.cn-beijing.volces.com/api/v3")
|
55 |
|
56 |
llm_prompt = """
|
57 |
-
请围绕"{theme}"主题生成一首符合"{tags}"
|
58 |
### **歌曲结构要求**
|
59 |
1. 歌词应富有变化,使情绪递进,整体连贯有层次感。**每行歌词长度应自然变化**,切勿长度一致,导致很格式化。
|
60 |
-
2.
|
61 |
### **歌曲内容要求**
|
62 |
1. **第一句歌词的时间戳应考虑前奏长度**,避免歌词从 `[00:00.00]` 直接开始。
|
63 |
2. **严格按照 LRC 格式输出歌词**,每行格式为 `[mm:ss.xx]歌词内容`。
|
64 |
-
3.
|
65 |
4. 输出必须是**纯净的 LRC**。
|
66 |
"""
|
67 |
|
@@ -156,8 +156,8 @@ with gr.Blocks(css=css) as demo:
|
|
156 |
- Each line must follow: `[mm:ss.xx]Lyric content`
|
157 |
- Example of valid format:
|
158 |
```
|
159 |
-
[00:
|
160 |
-
[00:
|
161 |
```
|
162 |
|
163 |
2. **Generation Duration Limits**
|
|
|
54 |
client = OpenAI(api_key=os.getenv('HS_DP_API'), base_url = "https://ark.cn-beijing.volces.com/api/v3")
|
55 |
|
56 |
llm_prompt = """
|
57 |
+
请围绕"{theme}"主题生成一首符合"{tags}"风格的语言为{language}的完整歌词。同时我希望你生成的歌词严格符合下述要求:
|
58 |
### **歌曲结构要求**
|
59 |
1. 歌词应富有变化,使情绪递进,整体连贯有层次感。**每行歌词长度应自然变化**,切勿长度一致,导致很格式化。
|
60 |
+
2. **时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测**,而非机械地按照歌词长度分配。
|
61 |
### **歌曲内容要求**
|
62 |
1. **第一句歌词的时间戳应考虑前奏长度**,避免歌词从 `[00:00.00]` 直接开始。
|
63 |
2. **严格按照 LRC 格式输出歌词**,每行格式为 `[mm:ss.xx]歌词内容`。
|
64 |
+
3. 输出的歌词不能有空行、括号,严禁出现除了时间戳和歌词以外的内容,例如:副歌、桥段、结尾等段落注释。
|
65 |
4. 输出必须是**纯净的 LRC**。
|
66 |
"""
|
67 |
|
|
|
156 |
- Each line must follow: `[mm:ss.xx]Lyric content`
|
157 |
- Example of valid format:
|
158 |
```
|
159 |
+
[00:10.00]Moonlight spills through broken blinds
|
160 |
+
[00:13.20]Your shadow dances on the dashboard shrine
|
161 |
```
|
162 |
|
163 |
2. **Generation Duration Limits**
|
diffrhythm/infer/infer.py
CHANGED
@@ -8,7 +8,8 @@ from tqdm import tqdm
|
|
8 |
import random
|
9 |
import numpy as np
|
10 |
import time
|
11 |
-
import
|
|
|
12 |
|
13 |
from diffrhythm.infer.infer_utils import (
|
14 |
get_reference_latent,
|
@@ -18,7 +19,6 @@ from diffrhythm.infer.infer_utils import (
|
|
18 |
get_negative_style_prompt
|
19 |
)
|
20 |
|
21 |
-
@spaces.GPU
|
22 |
def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
|
23 |
downsampling_ratio = 2048
|
24 |
io_channels = 2
|
@@ -74,7 +74,6 @@ def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
|
|
74 |
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
75 |
return y_final
|
76 |
|
77 |
-
@spaces.GPU
|
78 |
def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative_style_prompt, steps, sway_sampling_coef, start_time):
|
79 |
# import pdb; pdb.set_trace()
|
80 |
s_t = time.time()
|
@@ -91,7 +90,7 @@ def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative
|
|
91 |
start_time=start_time
|
92 |
)
|
93 |
|
94 |
-
|
95 |
latent = generated.transpose(1, 2) # [b d t]
|
96 |
e_t = time.time()
|
97 |
print(f"**** cfm time : {e_t-s_t} ****")
|
@@ -104,8 +103,18 @@ def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative
|
|
104 |
output_tensor = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).cpu()
|
105 |
output_np = output_tensor.numpy().T.astype(np.float32)
|
106 |
print(f"**** vae time : {time.time()-e_t} ****")
|
|
|
107 |
print(output_np.mean(), output_np.min(), output_np.max(), output_np.std())
|
108 |
-
return (44100, output_np)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
parser = argparse.ArgumentParser()
|
|
|
8 |
import random
|
9 |
import numpy as np
|
10 |
import time
|
11 |
+
import io
|
12 |
+
import pydub
|
13 |
|
14 |
from diffrhythm.infer.infer_utils import (
|
15 |
get_reference_latent,
|
|
|
19 |
get_negative_style_prompt
|
20 |
)
|
21 |
|
|
|
22 |
def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
|
23 |
downsampling_ratio = 2048
|
24 |
io_channels = 2
|
|
|
74 |
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
75 |
return y_final
|
76 |
|
|
|
77 |
def inference(cfm_model, vae_model, cond, text, duration, style_prompt, negative_style_prompt, steps, sway_sampling_coef, start_time):
|
78 |
# import pdb; pdb.set_trace()
|
79 |
s_t = time.time()
|
|
|
90 |
start_time=start_time
|
91 |
)
|
92 |
|
93 |
+
generated = generated.to(torch.float32)
|
94 |
latent = generated.transpose(1, 2) # [b d t]
|
95 |
e_t = time.time()
|
96 |
print(f"**** cfm time : {e_t-s_t} ****")
|
|
|
103 |
output_tensor = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).cpu()
|
104 |
output_np = output_tensor.numpy().T.astype(np.float32)
|
105 |
print(f"**** vae time : {time.time()-e_t} ****")
|
106 |
+
e_t = time.time()
|
107 |
print(output_np.mean(), output_np.min(), output_np.max(), output_np.std())
|
108 |
+
# return (44100, output_np)
|
109 |
+
|
110 |
+
buffer = io.BytesIO()
|
111 |
+
|
112 |
+
output_np = np.int16(output_np * 2**15)
|
113 |
+
song = pydub.AudioSegment(output_np.tobytes(), frame_rate=44100, sample_width=2, channels=2)
|
114 |
+
song.export(buffer, format="mp3", bitrate="320k")
|
115 |
+
print(f"**** buffer time : {time.time()-e_t} ****")
|
116 |
+
return buffer.getvalue()
|
117 |
+
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
parser = argparse.ArgumentParser()
|
diffrhythm/infer/infer_utils.py
CHANGED
@@ -35,9 +35,6 @@ def prepare_model(device):
|
|
35 |
# prepare vae
|
36 |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
|
37 |
vae = torch.jit.load(vae_ckpt_path, map_location='cpu').to(device)
|
38 |
-
print("********* vae.parameters() ", next(vae.parameters()).dtype)
|
39 |
-
vae = vae.half()
|
40 |
-
print("********* vae half parameters() ", next(vae.parameters()).dtype)
|
41 |
return cfm, tokenizer, muq, vae
|
42 |
|
43 |
|
|
|
35 |
# prepare vae
|
36 |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
|
37 |
vae = torch.jit.load(vae_ckpt_path, map_location='cpu').to(device)
|
|
|
|
|
|
|
38 |
return cfm, tokenizer, muq, vae
|
39 |
|
40 |
|