ing0 commited on
Commit
2597df1
·
1 Parent(s): 2a3c97e
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -51,7 +51,7 @@ def infer_music(lrc, ref_audio_path, steps, max_frames=2048, device='cuda'):
51
 
52
  def R1_infer1(theme, tags_gen, language):
53
  try:
54
- client = OpenAI(api_key="3581722f-9abc-49cf-9792-fa962cad9c4f", base_url = "https://ark.cn-beijing.volces.com/api/v3")
55
 
56
  llm_prompt = """
57
  请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
@@ -66,7 +66,7 @@ def R1_infer1(theme, tags_gen, language):
66
  """
67
 
68
  response = client.chat.completions.create(
69
- model="ep-20250215195652-lrff7",
70
  messages=[
71
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
72
  {"role": "user", "content": llm_prompt.format(theme=theme, tags=tags_gen, language=language)},
@@ -85,14 +85,14 @@ def R1_infer1(theme, tags_gen, language):
85
 
86
 
87
  def R1_infer2(tags_lyrics, lyrics_input):
88
- client = OpenAI(api_key="3581722f-9abc-49cf-9792-fa962cad9c4f", base_url = "https://ark.cn-beijing.volces.com/api/v3")
89
 
90
  llm_prompt = """
91
  {lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
92
  """
93
 
94
  response = client.chat.completions.create(
95
- model="ep-20250215195652-lrff7",
96
  messages=[
97
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
98
  {"role": "user", "content": llm_prompt.format(lyrics_input=lyrics_input, tags_lyrics=tags_lyrics)},
@@ -191,9 +191,9 @@ with gr.Blocks(css=css) as demo:
191
 
192
  gr.Examples(
193
  examples=[
194
- ["./gift_of_the_world.wav"],
195
- ["./most_beautiful_expectation.wav"],
196
- ["./ltwyl.wav"]
197
  ],
198
  inputs=[audio_prompt],
199
  label="Audio Examples",
 
51
 
52
  def R1_infer1(theme, tags_gen, language):
53
  try:
54
+ client = OpenAI(api_key=os.getenv('DP_API'), base_url="https://api.deepseek.com")
55
 
56
  llm_prompt = """
57
  请围绕"{theme}"主题生成一首符合"{tags}"风格的完整歌词。生成的{language}语言的歌词。
 
66
  """
67
 
68
  response = client.chat.completions.create(
69
+ model='deepseek-reasoner',
70
  messages=[
71
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
72
  {"role": "user", "content": llm_prompt.format(theme=theme, tags=tags_gen, language=language)},
 
85
 
86
 
87
  def R1_infer2(tags_lyrics, lyrics_input):
88
+ client = OpenAI(api_key=os.getenv('DP_API'), base_url="https://api.deepseek.com")
89
 
90
  llm_prompt = """
91
  {lyrics_input}这是一首歌的歌词,每一行是一句歌词,{tags_lyrics}是我希望这首歌的风格,我现在想要给这首歌的每一句歌词打时间戳得到LRC,我希望时间戳分配应根据歌曲的标签、歌词的情感、节奏来合理推测,而非机械地按照歌词长度分配。第一句歌词的时间戳应考虑前奏长度,避免歌词从 `[00:00.00]` 直接开始。严格按照 LRC 格式输出歌词,每行格式为 `[mm:ss.xx]歌词内容`。最后的结果只输出LRC,不需要其他的解释。
92
  """
93
 
94
  response = client.chat.completions.create(
95
+ model='deepseek-reasoner',
96
  messages=[
97
  {"role": "system", "content": "You are a professional musician who has been invited to make music-related comments."},
98
  {"role": "user", "content": llm_prompt.format(lyrics_input=lyrics_input, tags_lyrics=tags_lyrics)},
 
191
 
192
  gr.Examples(
193
  examples=[
194
+ ["./prompt/gift_of_the_world.wav"],
195
+ ["./prompt/most_beautiful_expectation.wav"],
196
+ ["./prompt/ltwyl.wav"]
197
  ],
198
  inputs=[audio_prompt],
199
  label="Audio Examples",