Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import librosa | |
import random | |
import json | |
from muq import MuQMuLan | |
from mutagen.mp3 import MP3 | |
import os | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from diffrhythm.model import DiT, CFM | |
def prepare_model(device): | |
# prepare cfm model | |
dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-base", filename="cfm_model.pt") | |
dit_config_path = "./diffrhythm/config/diffrhythm-1b.json" | |
with open(dit_config_path) as f: | |
model_config = json.load(f) | |
dit_model_cls = DiT | |
cfm = CFM( | |
transformer=dit_model_cls(**model_config["model"], use_style_prompt=True), | |
num_channels=model_config["model"]['mel_dim'], | |
use_style_prompt=True | |
) | |
cfm = cfm.to(device) | |
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False) | |
# prepare tokenizer | |
tokenizer = CNENTokenizer() | |
# prepare muq | |
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large") | |
muq = muq.to(device).eval() | |
# prepare vae | |
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt") | |
vae = torch.jit.load(vae_ckpt_path, map_location='cpu').to(device) | |
return cfm, tokenizer, muq, vae | |
# for song edit, will be added in the future | |
def get_reference_latent(device, max_frames): | |
return torch.zeros(1, max_frames, 64).to(device) | |
def get_negative_style_prompt(device): | |
file_path = "./src/negative_prompt.npy" | |
vocal_stlye = np.load(file_path) | |
vocal_stlye = torch.from_numpy(vocal_stlye).to(device) # [1, 512] | |
vocal_stlye = vocal_stlye.half() | |
return vocal_stlye | |
def get_style_prompt(model, wav_path): | |
mulan = model | |
audio, _ = librosa.load(wav_path, sr=24000) | |
audio_len = librosa.get_duration(y=audio, sr=24000) | |
assert audio_len >= 1, "Input audio length shorter than 1 second" | |
if audio_len > 10: | |
start_time = int(audio_len // 2 - 5) | |
wav = audio[start_time*24000:(start_time+10)*24000] | |
else: | |
wav = audio | |
wav = torch.tensor(wav).unsqueeze(0).to(model.device) | |
with torch.no_grad(): | |
audio_emb = mulan(wavs = wav) # [1, 512] | |
audio_emb = audio_emb | |
audio_emb = audio_emb.half() | |
return audio_emb | |
def parse_lyrics(lyrics: str): | |
lyrics_with_time = [] | |
lyrics = lyrics.strip() | |
for line in lyrics.split('\n'): | |
try: | |
time, lyric = line[1:9], line[10:] | |
lyric = lyric.strip() | |
mins, secs = time.split(':') | |
secs = int(mins) * 60 + float(secs) | |
lyrics_with_time.append((secs, lyric)) | |
except: | |
continue | |
return lyrics_with_time | |
class CNENTokenizer(): | |
def __init__(self): | |
with open('./diffrhythm/g2p/g2p/vocab.json', 'r') as file: | |
self.phone2id:dict = json.load(file)['vocab'] | |
self.id2phone = {v:k for (k, v) in self.phone2id.items()} | |
# from f5_tts.g2p.g2p_generation import chn_eng_g2p | |
from diffrhythm.g2p.g2p_generation import chn_eng_g2p | |
self.tokenizer = chn_eng_g2p | |
def encode(self, text): | |
phone, token = self.tokenizer(text) | |
token = [x+1 for x in token] | |
return token | |
def decode(self, token): | |
return "|".join([self.id2phone[x-1] for x in token]) | |
def get_lrc_token(text, tokenizer, device): | |
max_frames = 2048 | |
lyrics_shift = 0 | |
sampling_rate = 44100 | |
downsample_rate = 2048 | |
max_secs = max_frames / (sampling_rate / downsample_rate) | |
pad_token_id = 0 | |
comma_token_id = 1 | |
period_token_id = 2 | |
lrc_with_time = parse_lyrics(text) | |
modified_lrc_with_time = [] | |
for i in range(len(lrc_with_time)): | |
time, line = lrc_with_time[i] | |
line_token = tokenizer.encode(line) | |
modified_lrc_with_time.append((time, line_token)) | |
lrc_with_time = modified_lrc_with_time | |
lrc_with_time = [(time_start, line) for (time_start, line) in lrc_with_time if time_start < max_secs] | |
lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time | |
normalized_start_time = 0. | |
lrc = torch.zeros((max_frames,), dtype=torch.long) | |
tokens_count = 0 | |
last_end_pos = 0 | |
for time_start, line in lrc_with_time: | |
tokens = [token if token != period_token_id else comma_token_id for token in line] + [period_token_id] | |
tokens = torch.tensor(tokens, dtype=torch.long) | |
num_tokens = tokens.shape[0] | |
gt_frame_start = int(time_start * sampling_rate / downsample_rate) | |
frame_shift = random.randint(int(lyrics_shift), int(lyrics_shift)) | |
frame_start = max(gt_frame_start - frame_shift, last_end_pos) | |
frame_len = min(num_tokens, max_frames - frame_start) | |
#print(gt_frame_start, frame_shift, frame_start, frame_len, tokens_count, last_end_pos, full_pos_emb.shape) | |
lrc[frame_start:frame_start + frame_len] = tokens[:frame_len] | |
tokens_count += num_tokens | |
last_end_pos = frame_start + frame_len | |
lrc_emb = lrc.unsqueeze(0).to(device) | |
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device) | |
normalized_start_time = normalized_start_time.half() | |
return lrc_emb, normalized_start_time | |
def load_checkpoint(model, ckpt_path, device, use_ema=True): | |
if device == "cuda": | |
model = model.half() | |
ckpt_type = ckpt_path.split(".")[-1] | |
if ckpt_type == "safetensors": | |
from safetensors.torch import load_file | |
checkpoint = load_file(ckpt_path) | |
else: | |
checkpoint = torch.load(ckpt_path, weights_only=True) | |
if use_ema: | |
if ckpt_type == "safetensors": | |
checkpoint = {"ema_model_state_dict": checkpoint} | |
checkpoint["model_state_dict"] = { | |
k.replace("ema_model.", ""): v | |
for k, v in checkpoint["ema_model_state_dict"].items() | |
if k not in ["initted", "step"] | |
} | |
model.load_state_dict(checkpoint["model_state_dict"], strict=False) | |
else: | |
if ckpt_type == "safetensors": | |
checkpoint = {"model_state_dict": checkpoint} | |
model.load_state_dict(checkpoint["model_state_dict"], strict=False) | |
return model.to(device) |