DiffRhythm / diffrhythm /infer /infer_utils.py
ing0's picture
cn lyrics example
d411505
import torch
import librosa
import random
import json
from muq import MuQMuLan
from mutagen.mp3 import MP3
import os
import numpy as np
from huggingface_hub import hf_hub_download
from diffrhythm.model import DiT, CFM
def prepare_model(device):
# prepare cfm model
dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-base", filename="cfm_model.pt")
dit_config_path = "./diffrhythm/config/diffrhythm-1b.json"
with open(dit_config_path) as f:
model_config = json.load(f)
dit_model_cls = DiT
cfm = CFM(
transformer=dit_model_cls(**model_config["model"], use_style_prompt=True),
num_channels=model_config["model"]['mel_dim'],
use_style_prompt=True
)
cfm = cfm.to(device)
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False)
# prepare tokenizer
tokenizer = CNENTokenizer()
# prepare muq
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large")
muq = muq.to(device).eval()
# prepare vae
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
vae = torch.jit.load(vae_ckpt_path, map_location='cpu').to(device)
return cfm, tokenizer, muq, vae
# for song edit, will be added in the future
def get_reference_latent(device, max_frames):
return torch.zeros(1, max_frames, 64).to(device)
def get_negative_style_prompt(device):
file_path = "./src/negative_prompt.npy"
vocal_stlye = np.load(file_path)
vocal_stlye = torch.from_numpy(vocal_stlye).to(device) # [1, 512]
vocal_stlye = vocal_stlye.half()
return vocal_stlye
def get_style_prompt(model, wav_path):
mulan = model
audio, _ = librosa.load(wav_path, sr=24000)
audio_len = librosa.get_duration(y=audio, sr=24000)
assert audio_len >= 1, "Input audio length shorter than 1 second"
if audio_len > 10:
start_time = int(audio_len // 2 - 5)
wav = audio[start_time*24000:(start_time+10)*24000]
else:
wav = audio
wav = torch.tensor(wav).unsqueeze(0).to(model.device)
with torch.no_grad():
audio_emb = mulan(wavs = wav) # [1, 512]
audio_emb = audio_emb
audio_emb = audio_emb.half()
return audio_emb
def parse_lyrics(lyrics: str):
lyrics_with_time = []
lyrics = lyrics.strip()
for line in lyrics.split('\n'):
try:
time, lyric = line[1:9], line[10:]
lyric = lyric.strip()
mins, secs = time.split(':')
secs = int(mins) * 60 + float(secs)
lyrics_with_time.append((secs, lyric))
except:
continue
return lyrics_with_time
class CNENTokenizer():
def __init__(self):
with open('./diffrhythm/g2p/g2p/vocab.json', 'r') as file:
self.phone2id:dict = json.load(file)['vocab']
self.id2phone = {v:k for (k, v) in self.phone2id.items()}
# from f5_tts.g2p.g2p_generation import chn_eng_g2p
from diffrhythm.g2p.g2p_generation import chn_eng_g2p
self.tokenizer = chn_eng_g2p
def encode(self, text):
phone, token = self.tokenizer(text)
token = [x+1 for x in token]
return token
def decode(self, token):
return "|".join([self.id2phone[x-1] for x in token])
def get_lrc_token(text, tokenizer, device):
max_frames = 2048
lyrics_shift = 0
sampling_rate = 44100
downsample_rate = 2048
max_secs = max_frames / (sampling_rate / downsample_rate)
pad_token_id = 0
comma_token_id = 1
period_token_id = 2
lrc_with_time = parse_lyrics(text)
modified_lrc_with_time = []
for i in range(len(lrc_with_time)):
time, line = lrc_with_time[i]
line_token = tokenizer.encode(line)
modified_lrc_with_time.append((time, line_token))
lrc_with_time = modified_lrc_with_time
lrc_with_time = [(time_start, line) for (time_start, line) in lrc_with_time if time_start < max_secs]
lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time
normalized_start_time = 0.
lrc = torch.zeros((max_frames,), dtype=torch.long)
tokens_count = 0
last_end_pos = 0
for time_start, line in lrc_with_time:
tokens = [token if token != period_token_id else comma_token_id for token in line] + [period_token_id]
tokens = torch.tensor(tokens, dtype=torch.long)
num_tokens = tokens.shape[0]
gt_frame_start = int(time_start * sampling_rate / downsample_rate)
frame_shift = random.randint(int(lyrics_shift), int(lyrics_shift))
frame_start = max(gt_frame_start - frame_shift, last_end_pos)
frame_len = min(num_tokens, max_frames - frame_start)
#print(gt_frame_start, frame_shift, frame_start, frame_len, tokens_count, last_end_pos, full_pos_emb.shape)
lrc[frame_start:frame_start + frame_len] = tokens[:frame_len]
tokens_count += num_tokens
last_end_pos = frame_start + frame_len
lrc_emb = lrc.unsqueeze(0).to(device)
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device)
normalized_start_time = normalized_start_time.half()
return lrc_emb, normalized_start_time
def load_checkpoint(model, ckpt_path, device, use_ema=True):
if device == "cuda":
model = model.half()
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path)
else:
checkpoint = torch.load(ckpt_path, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
return model.to(device)