Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,570 Bytes
b96e750 4e97955 b96e750 4e97955 b96e750 4e97955 1a3ee96 b96e750 5fa1afb b96e750 d0bd81d b96e750 d0bd81d b96e750 d0bd81d b96e750 d0bd81d b96e750 d0bd81d b96e750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
import librosa
import random
import json
from muq import MuQMuLan
from mutagen.mp3 import MP3
import os
import numpy as np
from huggingface_hub import hf_hub_download
from diffrhythm.model import DiT, CFM
def prepare_model(device):
# prepare cfm model
dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-base", filename="cfm_model.pt")
dit_config_path = "./diffrhythm/config/diffrhythm-1b.json"
with open(dit_config_path) as f:
model_config = json.load(f)
dit_model_cls = DiT
cfm = CFM(
transformer=dit_model_cls(**model_config["model"], use_style_prompt=True),
num_channels=model_config["model"]['mel_dim'],
use_style_prompt=True
)
cfm = cfm.to(device)
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False)
# prepare tokenizer
tokenizer = CNENTokenizer()
# prepare muq
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large")
muq = muq.to(device).eval()
# prepare vae
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
vae = torch.jit.load(vae_ckpt_path, map_location='cpu').to(device)
return cfm, tokenizer, muq, vae
# for song edit, will be added in the future
def get_reference_latent(device, max_frames):
return torch.zeros(1, max_frames, 64).to(device)
def get_negative_style_prompt(device):
file_path = "./src/negative_prompt.npy"
vocal_stlye = np.load(file_path)
vocal_stlye = torch.from_numpy(vocal_stlye).to(device) # [1, 512]
vocal_stlye = vocal_stlye.half()
return vocal_stlye
def get_style_prompt(model, wav_path):
mulan = model
ext = os.path.splitext(wav_path)[-1].lower()
if ext == '.mp3':
meta = MP3(wav_path)
audio_len = meta.info.length
elif ext in ['.wav', '.flac']:
audio_len = librosa.get_duration(path=wav_path)
else:
raise ValueError("Unsupported file format: {}".format(ext))
assert audio_len >= 1, "Input audio length shorter than 1 second"
if audio_len >= 10:
mid_time = audio_len // 2
start_time = mid_time - 5
wav, _ = librosa.load(wav_path, sr=24000, offset=start_time, duration=10)
else:
wav, _ = librosa.load(wav_path, sr=24000)
wav = torch.tensor(wav).unsqueeze(0).to(model.device)
with torch.no_grad():
audio_emb = mulan(wavs = wav) # [1, 512]
audio_emb = audio_emb
audio_emb = audio_emb.half()
return audio_emb
def parse_lyrics(lyrics: str):
lyrics_with_time = []
lyrics = lyrics.strip()
for line in lyrics.split('\n'):
try:
time, lyric = line[1:9], line[10:]
lyric = lyric.strip()
mins, secs = time.split(':')
secs = int(mins) * 60 + float(secs)
lyrics_with_time.append((secs, lyric))
except:
continue
return lyrics_with_time
class CNENTokenizer():
def __init__(self):
with open('./diffrhythm/g2p/g2p/vocab.json', 'r') as file:
self.phone2id:dict = json.load(file)['vocab']
self.id2phone = {v:k for (k, v) in self.phone2id.items()}
# from f5_tts.g2p.g2p_generation import chn_eng_g2p
from diffrhythm.g2p.g2p_generation import chn_eng_g2p
self.tokenizer = chn_eng_g2p
def encode(self, text):
phone, token = self.tokenizer(text)
token = [x+1 for x in token]
return token
def decode(self, token):
return "|".join([self.id2phone[x-1] for x in token])
def get_lrc_token(text, tokenizer, device):
max_frames = 2048
lyrics_shift = 0
sampling_rate = 44100
downsample_rate = 2048
max_secs = max_frames / (sampling_rate / downsample_rate)
pad_token_id = 0
comma_token_id = 1
period_token_id = 2
lrc_with_time = parse_lyrics(text)
modified_lrc_with_time = []
for i in range(len(lrc_with_time)):
time, line = lrc_with_time[i]
line_token = tokenizer.encode(line)
modified_lrc_with_time.append((time, line_token))
lrc_with_time = modified_lrc_with_time
lrc_with_time = [(time_start, line) for (time_start, line) in lrc_with_time if time_start < max_secs]
lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time
normalized_start_time = 0.
lrc = torch.zeros((max_frames,), dtype=torch.long)
tokens_count = 0
last_end_pos = 0
for time_start, line in lrc_with_time:
tokens = [token if token != period_token_id else comma_token_id for token in line] + [period_token_id]
tokens = torch.tensor(tokens, dtype=torch.long)
num_tokens = tokens.shape[0]
gt_frame_start = int(time_start * sampling_rate / downsample_rate)
frame_shift = random.randint(int(lyrics_shift), int(lyrics_shift))
frame_start = max(gt_frame_start - frame_shift, last_end_pos)
frame_len = min(num_tokens, max_frames - frame_start)
#print(gt_frame_start, frame_shift, frame_start, frame_len, tokens_count, last_end_pos, full_pos_emb.shape)
lrc[frame_start:frame_start + frame_len] = tokens[:frame_len]
tokens_count += num_tokens
last_end_pos = frame_start + frame_len
lrc_emb = lrc.unsqueeze(0).to(device)
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device)
normalized_start_time = normalized_start_time.half()
return lrc_emb, normalized_start_time
def load_checkpoint(model, ckpt_path, device, use_ema=True):
if device == "cuda":
model = model.half()
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path)
else:
checkpoint = torch.load(ckpt_path, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
return model.to(device) |