File size: 3,739 Bytes
e48780a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import sys

from diffrhythm.g2p.g2p import PhonemeBpeTokenizer
from diffrhythm.g2p.utils.g2p import phonemizer_g2p
import tqdm
from typing import List
import json
import os
import re


def ph_g2p(text, language):

    return phonemizer_g2p(text=text, language=language)


def g2p(text, sentence, language):

    return text_tokenizer.tokenize(text=text, sentence=sentence, language=language)


def is_chinese(char):
    if char >= "\u4e00" and char <= "\u9fa5":
        return True
    else:
        return False


def is_alphabet(char):
    if (char >= "\u0041" and char <= "\u005a") or (
        char >= "\u0061" and char <= "\u007a"
    ):
        return True
    else:
        return False


def is_other(char):
    if not (is_chinese(char) or is_alphabet(char)):
        return True
    else:
        return False


def get_segment(text: str) -> List[str]:
    # sentence --> [ch_part, en_part, ch_part, ...]
    segments = []
    types = []
    flag = 0
    temp_seg = ""
    temp_lang = ""

    # Determine the type of each character. type: blank, chinese, alphabet, number, unk and point.
    for i, ch in enumerate(text):
        if is_chinese(ch):
            types.append("zh")
        elif is_alphabet(ch):
            types.append("en")
        else:
            types.append("other")

    assert len(types) == len(text)

    for i in range(len(types)):
        # find the first char of the seg
        if flag == 0:
            temp_seg += text[i]
            temp_lang = types[i]
            flag = 1
        else:
            if temp_lang == "other":
                if types[i] == temp_lang:
                    temp_seg += text[i]
                else:
                    temp_seg += text[i]
                    temp_lang = types[i]
            else:
                if types[i] == temp_lang:
                    temp_seg += text[i]
                elif types[i] == "other":
                    temp_seg += text[i]
                else:
                    segments.append((temp_seg, temp_lang))
                    temp_seg = text[i]
                    temp_lang = types[i]
                    flag = 1

    segments.append((temp_seg, temp_lang))
    return segments


def chn_eng_g2p(text: str):
    # now only en and ch
    segments = get_segment(text)
    all_phoneme = ""
    all_tokens = []

    for index in range(len(segments)):
        seg = segments[index]
        phoneme, token = g2p(seg[0], text, seg[1])
        all_phoneme += phoneme + "|"
        all_tokens += token

        if seg[1] == "en" and index == len(segments) - 1 and all_phoneme[-2] == "_":
            all_phoneme = all_phoneme[:-2]
            all_tokens = all_tokens[:-1]
    return all_phoneme, all_tokens


text_tokenizer = PhonemeBpeTokenizer()
with open("./diffrhythm/g2p/g2p/vocab.json", "r") as f:
    json_data = f.read()
data = json.loads(json_data)
vocab = data["vocab"]

if __name__ == '__main__':
    phone, token = chn_eng_g2p("你好,hello world")
    phone, token = chn_eng_g2p("你好,hello world, Bonjour, 테스트 해 보겠습니다, 五月雨緑")
    print(phone)
    print(token)

    #phone, token = text_tokenizer.tokenize("你好,hello world, Bonjour, 테스트 해 보겠습니다, 五月雨緑", "", "auto")
    phone, token = text_tokenizer.tokenize("緑", "", "auto")
    #phone, token = text_tokenizer.tokenize("आइए इसका परीक्षण करें", "", "auto")
    #phone, token = text_tokenizer.tokenize("आइए इसका परीक्षण करें", "", "other")
    print(phone)
    print(token)