patrickvonplaten commited on
Commit
dcab473
·
1 Parent(s): 2b0be71
__pycache__/app.cpython-310.pyc ADDED
Binary file (6.48 kB). View file
 
__pycache__/gallery_history.cpython-310.pyc ADDED
Binary file (4.43 kB). View file
 
__pycache__/illusion_style.cpython-310.pyc ADDED
Binary file (985 Bytes). View file
 
__pycache__/share_btn.cpython-310.pyc ADDED
Binary file (6.95 kB). View file
 
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import torch
2
- import os
3
  import gradio as gr
4
  from PIL import Image
5
  import random
@@ -15,7 +14,7 @@ from diffusers import (
15
  EulerDiscreteScheduler # <-- Added import
16
  )
17
  from share_btn import community_icon_html, loading_icon_html, share_js
18
- from gallery_history import fetch_gallery_history, show_gallery_history
19
  from illusion_style import css
20
 
21
  BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
@@ -112,6 +111,8 @@ def inference(
112
 
113
  # Rest of your existing code
114
  control_image_small = center_crop_resize(control_image)
 
 
115
  main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
116
  my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
117
  generator = torch.Generator(device="cuda").manual_seed(seed)
@@ -128,7 +129,6 @@ def inference(
128
  num_inference_steps=15,
129
  output_type="latent"
130
  )
131
- control_image_large = center_crop_resize(control_image, (1024, 1024))
132
  upscaled_latents = upscale(out, "nearest-exact", 2)
133
  out_image = image_pipe(
134
  prompt=prompt,
@@ -184,23 +184,25 @@ with gr.Blocks(css=css) as app:
184
  loading_icon = gr.HTML(loading_icon_html)
185
  share_button = gr.Button("Share to community", elem_id="share-btn")
186
 
187
- history = show_gallery_history()
188
  prompt.submit(
189
  inference,
190
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
191
  outputs=[result_image, share_group, used_seed]
192
- ).then(
193
- fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
194
  )
 
 
 
195
  run_btn.click(
196
  inference,
197
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
198
  outputs=[result_image, share_group, used_seed]
199
- ).then(
200
- fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
201
  )
 
 
 
202
  share_button.click(None, [], [], _js=share_js)
203
  app.queue(max_size=20)
204
 
205
  if __name__ == "__main__":
206
- app.launch()
 
1
  import torch
 
2
  import gradio as gr
3
  from PIL import Image
4
  import random
 
14
  EulerDiscreteScheduler # <-- Added import
15
  )
16
  from share_btn import community_icon_html, loading_icon_html, share_js
17
+ # from gallery_history import fetch_gallery_history, show_gallery_history
18
  from illusion_style import css
19
 
20
  BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
 
111
 
112
  # Rest of your existing code
113
  control_image_small = center_crop_resize(control_image)
114
+ control_image_large = center_crop_resize(control_image, (1024, 1024))
115
+
116
  main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
117
  my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
118
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
129
  num_inference_steps=15,
130
  output_type="latent"
131
  )
 
132
  upscaled_latents = upscale(out, "nearest-exact", 2)
133
  out_image = image_pipe(
134
  prompt=prompt,
 
184
  loading_icon = gr.HTML(loading_icon_html)
185
  share_button = gr.Button("Share to community", elem_id="share-btn")
186
 
187
+ # history = show_gallery_history()
188
  prompt.submit(
189
  inference,
190
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
191
  outputs=[result_image, share_group, used_seed]
 
 
192
  )
193
+ # ).then(
194
+ # fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
195
+ # )
196
  run_btn.click(
197
  inference,
198
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
199
  outputs=[result_image, share_group, used_seed]
 
 
200
  )
201
+ # ).then(
202
+ # fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
203
+ # )
204
  share_button.click(None, [], [], _js=share_js)
205
  app.queue(max_size=20)
206
 
207
  if __name__ == "__main__":
208
+ app.launch(share=True)
requirements.txt CHANGED
@@ -1,9 +1,11 @@
1
  diffusers
2
  transformers
3
  accelerate
4
- torch
5
  xformers
6
  gradio
7
  Pillow
8
  qrcode
9
- filelock
 
 
 
 
1
  diffusers
2
  transformers
3
  accelerate
 
4
  xformers
5
  gradio
6
  Pillow
7
  qrcode
8
+ filelock
9
+
10
+ --extra-index-url https://download.pytorch.org/whl/cu118
11
+ torch