Wauplin's picture
Wauplin HF staff
Deactivate queue for user history retrieval
ea633c9
raw
history blame
5.8 kB
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
DiffusionPipeline,
AutoencoderKL,
StableDiffusionControlNetPipeline,
ControlNetModel,
StableDiffusionLatentUpscalePipeline,
DPMSolverMultistepScheduler, # <-- Added import
EulerDiscreteScheduler # <-- Added import
)
from share_btn import community_icon_html, loading_icon_html, share_js
from gallery_history import fetch_gallery_history, show_gallery_history
from illusion_style import css
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
# Initialize both pipelines
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
#init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster")#, torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
BASE_MODEL,
controlnet=controlnet,
vae=vae,
safety_checker=None,
#torch_dtype=torch.float16,
).to("cuda")
#model_id = "stabilityai/sd-x2-latent-upscaler"
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
#upscaler.to("cuda")
# Sampler map
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
def center_crop_resize(img, output_size=(512, 512)):
width, height = img.size
# Calculate dimensions to crop to the center
new_dimension = min(width, height)
left = (width - new_dimension)/2
top = (height - new_dimension)/2
right = (width + new_dimension)/2
bottom = (height + new_dimension)/2
# Crop and resize
img = img.crop((left, top, right, bottom))
img = img.resize(output_size)
return img
# Inference function
def inference(
control_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1,
seed: int = -1,
sampler = "DPM++ Karras SDE",
progress = gr.Progress(track_tqdm=True)
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
# Generate the initial image
#init_image = init_pipe(prompt).images[0]
# Rest of your existing code
control_image = center_crop_resize(control_image)
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
out = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=control_image,
#control_image=control_image,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
#strength=strength,
num_inference_steps=30,
#output_type="latent"
).images[0]
return out, gr.update(visible=True)
with gr.Blocks(css=css) as app:
gr.Markdown(
'''
<center><h1>Illusion Diffusion πŸŒ€</h1></span>
<span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
</center>
A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)
This project works by using [Monster Labs QR Control Net](https://huggingface.co./monster-labs/control_v1p_sd15_qrcode_monster).
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)
'''
)
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale", elem_id="illusion_strength")
gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image)
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality", elem_id="negative_prompt")
with gr.Accordion(label="Advanced Options", open=False):
#strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output", elem_id="output")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
history = show_gallery_history()
run_btn.click(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler],
outputs=[result_image, share_group]
).then(
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
)
share_button.click(None, [], [], _js=share_js)
app.queue(max_size=20)
if __name__ == "__main__":
app.launch()