import gradio as gr from PIL import Image, ImageDraw, ImageFont from transformers import pipeline import cv2 import numpy as np import tempfile import os # Initialize the object detection pipeline object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") def draw_bounding_boxes(frame, detections): """ Draws bounding boxes on the video frame based on the detections. """ # Convert numpy array to PIL Image frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(frame_rgb) draw = ImageDraw.Draw(pil_image) # Use default font font = ImageFont.load_default() for detection in detections: box = detection['box'] xmin = int(box['xmin']) ymin = int(box['ymin']) xmax = int(box['xmax']) ymax = int(box['ymax']) # Draw the bounding box draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) # Create label with score label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" # Draw text with background rectangle for visibility text_bbox = draw.textbbox((xmin, ymin), text, font=font) draw.rectangle([ (text_bbox[0], text_bbox[1]), (text_bbox[2], text_bbox[3]) ], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) # Convert back to numpy array frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) return frame_with_boxes def process_video(video_path): """ Process the video file and return the path to the processed video """ try: # Open the video file cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return None # Get video properties fps = int(cap.get(cv2.CAP_PROP_FPS)) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Create temporary file for output video temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) output_path = temp_output.name temp_output.close() # Initialize video writer fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height)) frame_count = 0 total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Process every nth frame to speed up processing process_every_n_frames = 2 # Adjust this value to process more or fewer frames while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_count += 1 # Only process every nth frame if frame_count % process_every_n_frames == 0: # Convert frame to RGB for the model frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Detect objects detections = object_detector(frame_rgb) # Draw bounding boxes frame = draw_bounding_boxes(frame, detections) # Write the frame out.write(frame) # Print progress progress = (frame_count / total_frames) * 100 print(f"Processing: {progress:.1f}% complete", end='\r') # Release everything cap.release() out.release() return output_path except Exception as e: print(f"Error processing video: {str(e)}") return None def detect_objects_in_video(video): """ Gradio interface function for video object detection """ if video is None: return None try: # Process the video output_path = process_video(video) if output_path is None: return None return output_path except Exception as e: print(f"Error during video processing: {str(e)}") return None # Create the Gradio interface demo = gr.Interface( fn=detect_objects_in_video, inputs=[ gr.Video(label="Upload Video") ], outputs=[ gr.Video(label="Processed Video") ], title="@GenAILearniverse Project: Video Object Detection", description=""" Upload a video to detect and track objects within it. The application will process the video and draw bounding boxes around detected objects with their labels and confidence scores. Note: Processing may take some time depending on the video length. """ ) if __name__ == "__main__": demo.launch()