|
import argparse |
|
import os |
|
import random |
|
from datetime import datetime |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import av |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline |
|
from einops import repeat |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from torchvision import transforms |
|
from transformers import CLIPVisionModelWithProjection |
|
|
|
from src.models.unet_2d_condition import UNet2DConditionModel |
|
from src.models.unet_3d_echo import EchoUNet3DConditionModel |
|
from src.models.whisper.audio2feature import load_audio_model |
|
from src.pipelines.pipeline_echo_mimic_pose import AudioPose2VideoPipeline |
|
from src.utils.util import get_fps, read_frames, save_videos_grid, crop_and_pad |
|
import sys |
|
from src.models.face_locator import FaceLocator |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
from facenet_pytorch import MTCNN |
|
from src.utils.draw_utils import FaceMeshVisualizer |
|
import pickle |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config", type=str, default="./configs/prompts/animation_pose.yaml") |
|
parser.add_argument("-W", type=int, default=512) |
|
parser.add_argument("-H", type=int, default=512) |
|
parser.add_argument("-L", type=int, default=160) |
|
parser.add_argument("--seed", type=int, default=420) |
|
parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1) |
|
parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5) |
|
|
|
parser.add_argument("--context_frames", type=int, default=12) |
|
parser.add_argument("--context_overlap", type=int, default=3) |
|
|
|
parser.add_argument("--cfg", type=float, default=2.5) |
|
parser.add_argument("--steps", type=int, default=30) |
|
parser.add_argument("--sample_rate", type=int, default=16000) |
|
parser.add_argument("--fps", type=int, default=24) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
def select_face(det_bboxes, probs): |
|
|
|
|
|
filtered_bboxes = [] |
|
for bbox_i in range(len(det_bboxes)): |
|
if probs[bbox_i] > 0.8: |
|
filtered_bboxes.append(det_bboxes[bbox_i]) |
|
if len(filtered_bboxes) == 0: |
|
return None |
|
|
|
sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True) |
|
return sorted_bboxes[0] |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
config = OmegaConf.load(args.config) |
|
if config.weight_dtype == "fp16": |
|
weight_dtype = torch.float16 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
device = args.device |
|
if device.__contains__("cuda") and not torch.cuda.is_available(): |
|
device = "cpu" |
|
|
|
inference_config_path = config.inference_config |
|
infer_config = OmegaConf.load(inference_config_path) |
|
|
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
config.pretrained_vae_path, |
|
).to("cuda", dtype=weight_dtype) |
|
|
|
|
|
reference_unet = UNet2DConditionModel.from_pretrained( |
|
config.pretrained_base_model_path, |
|
subfolder="unet", |
|
).to(dtype=weight_dtype, device=device) |
|
reference_unet.load_state_dict( |
|
torch.load(config.reference_unet_path, map_location="cpu"), |
|
) |
|
|
|
|
|
if os.path.exists(config.motion_module_path): |
|
|
|
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( |
|
config.pretrained_base_model_path, |
|
config.motion_module_path, |
|
subfolder="unet", |
|
unet_additional_kwargs=infer_config.unet_additional_kwargs, |
|
).to(dtype=weight_dtype, device=device) |
|
else: |
|
|
|
denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( |
|
config.pretrained_base_model_path, |
|
"", |
|
subfolder="unet", |
|
unet_additional_kwargs={ |
|
"use_motion_module": False, |
|
"unet_use_temporal_attention": False, |
|
"cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim |
|
} |
|
).to(dtype=weight_dtype, device=device) |
|
denoising_unet.load_state_dict( |
|
torch.load(config.denoising_unet_path, map_location="cpu"), |
|
strict=False |
|
) |
|
|
|
|
|
face_locator = FaceLocator(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to( |
|
dtype=weight_dtype, device="cuda" |
|
) |
|
face_locator.load_state_dict(torch.load(config.face_locator_path)) |
|
|
|
visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False) |
|
|
|
|
|
audio_processor = load_audio_model(model_path=config.audio_model_path, device=device) |
|
|
|
|
|
face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device) |
|
|
|
|
|
|
|
width, height = args.W, args.H |
|
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) |
|
scheduler = DDIMScheduler(**sched_kwargs) |
|
|
|
pipe = AudioPose2VideoPipeline( |
|
vae=vae, |
|
reference_unet=reference_unet, |
|
denoising_unet=denoising_unet, |
|
audio_guider=audio_processor, |
|
face_locator=face_locator, |
|
scheduler=scheduler, |
|
) |
|
|
|
pipe = pipe.to("cuda", dtype=weight_dtype) |
|
|
|
date_str = datetime.now().strftime("%Y%m%d") |
|
time_str = datetime.now().strftime("%H%M") |
|
save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}" |
|
save_dir = Path(f"output/{date_str}/{save_dir_name}") |
|
save_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
for ref_image_path in config["test_cases"].keys(): |
|
for file_path in config["test_cases"][ref_image_path]: |
|
if ".wav" in file_path: |
|
audio_path = file_path |
|
else: |
|
pose_dir = file_path |
|
|
|
if args.seed is not None and args.seed > -1: |
|
generator = torch.manual_seed(args.seed) |
|
else: |
|
generator = torch.manual_seed(random.randint(100, 1000000)) |
|
|
|
ref_name = Path(ref_image_path).stem |
|
audio_name = Path(audio_path).stem |
|
final_fps = args.fps |
|
|
|
ref_image_pil = Image.open(ref_image_path).convert("RGB") |
|
|
|
|
|
pose_list = [] |
|
for index in range(len(os.listdir(pose_dir))): |
|
tgt_musk_path = os.path.join(pose_dir, f"{index}.pkl") |
|
|
|
with open(tgt_musk_path, "rb") as f: |
|
tgt_kpts = pickle.load(f) |
|
tgt_musk = visualizer.draw_landmarks((args.W, args.H), tgt_kpts) |
|
tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB') |
|
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0) |
|
face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0) |
|
|
|
|
|
video = pipe( |
|
ref_image_pil, |
|
audio_path, |
|
face_mask_tensor, |
|
width, |
|
height, |
|
args.L, |
|
args.steps, |
|
args.cfg, |
|
generator=generator, |
|
audio_sample_rate=args.sample_rate, |
|
context_frames=12, |
|
fps=final_fps, |
|
context_overlap=3 |
|
).videos |
|
|
|
final_length = min(video.shape[2], face_mask_tensor.shape[2]) |
|
video = torch.cat([video[:, :, :final_length, :, :], face_mask_tensor[:, :, :final_length, :, :].detach().cpu()], dim=-1) |
|
save_videos_grid( |
|
video, |
|
f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4", |
|
n_rows=2, |
|
fps=final_fps, |
|
) |
|
|
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
video_clip = VideoFileClip(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4") |
|
audio_clip = AudioFileClip(audio_path) |
|
video_clip = video_clip.set_audio(audio_clip) |
|
video_clip.write_videofile(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4", codec="libx264", audio_codec="aac") |
|
print(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|