|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models import ModelMixin |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from einops import rearrange, repeat |
|
from torch import nn |
|
|
|
from .attention import TemporalBasicTransformerBlock |
|
|
|
|
|
@dataclass |
|
class Transformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
class Transformer3DModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalBasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_out = nn.Conv2d( |
|
inner_dim, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
audio_cond_fea=None, |
|
timestep=None, |
|
return_dict: bool = True, |
|
): |
|
|
|
assert ( |
|
hidden_states.dim() == 5 |
|
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
video_length = hidden_states.shape[2] |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
if audio_cond_fea.shape[0] != hidden_states.shape[0]: |
|
if len(audio_cond_fea.shape) == 3: |
|
audio_cond_fea = rearrange( |
|
audio_cond_fea, "b f c -> (b f) 1 c" |
|
) |
|
elif len(audio_cond_fea.shape) == 4: |
|
audio_cond_fea = rearrange( |
|
audio_cond_fea, "b f n c -> (b f) n c" |
|
) |
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( |
|
batch, height * weight, inner_dim |
|
) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( |
|
batch, height * weight, inner_dim |
|
) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for i, block in enumerate(self.transformer_blocks): |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
audio_cond_fea=audio_cond_fea, |
|
timestep=timestep, |
|
video_length=video_length, |
|
) |
|
|
|
|
|
if not self.use_linear_projection: |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim) |
|
.permute(0, 3, 1, 2) |
|
.contiguous() |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim) |
|
.permute(0, 3, 1, 2) |
|
.contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) |
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer3DModelOutput(sample=output) |
|
|