#v3/modules/studentact/current_situation_analysis.py import streamlit as st import matplotlib.pyplot as plt import networkx as nx import seaborn as sns from collections import Counter from itertools import combinations import numpy as np import matplotlib.patches as patches import logging logger = logging.getLogger(__name__) ################################################################### def analyze_text_dimensions(doc): """ Analiza las dimensiones principales del texto. """ try: # Análisis de vocabulario vocab_score, vocab_details = analyze_vocabulary_diversity(doc) # Análisis de estructura struct_score = analyze_structure(doc) # Análisis de cohesión cohesion_score = analyze_cohesion(doc) # Análisis de claridad clarity_score, clarity_details = analyze_clarity(doc) return { 'vocabulary': { 'normalized_score': vocab_score, 'details': vocab_details }, 'structure': { 'normalized_score': struct_score, 'details': None # Por ahora no tiene detalles }, 'cohesion': { 'normalized_score': cohesion_score, 'details': None # Por ahora no tiene detalles }, 'clarity': { 'normalized_score': clarity_score, 'details': clarity_details } } except Exception as e: logger.error(f"Error en analyze_text_dimensions: {str(e)}") return { 'vocabulary': {'normalized_score': 0.0, 'details': {}}, 'structure': {'normalized_score': 0.0, 'details': {}}, 'cohesion': {'normalized_score': 0.0, 'details': {}}, 'clarity': {'normalized_score': 0.0, 'details': {}} } #################################################################### def analyze_clarity(doc): """ Analiza la claridad del texto considerando múltiples factores. """ try: # 1. Análisis de oraciones sentences = list(doc.sents) if not sentences: return 0.0, {} # Longitud de oraciones sentence_lengths = [len(sent) for sent in sentences] avg_length = sum(sentence_lengths) / len(sentences) length_variation = np.std(sentence_lengths) if len(sentences) > 1 else 0 # Normalizar longitud length_score = normalize_score(avg_length, optimal_length=20) # 2. Análisis de conectores connector_count = 0 connector_types = { 'CCONJ': 0.8, 'SCONJ': 1.0, 'ADV': 0.6 } for token in doc: if token.pos_ in connector_types and token.dep_ in ['cc', 'mark', 'advmod']: connector_count += connector_types[token.pos_] connector_score = min(1.0, connector_count / (len(sentences) * 0.8)) # 3. Complejidad estructural clause_count = 0 for sent in sentences: verbs = [token for token in sent if token.pos_ == 'VERB'] clause_count += len(verbs) complexity_raw = clause_count / len(sentences) if len(sentences) > 0 else 0 complexity_score = normalize_score(complexity_raw, optimal_value=2.0) # 4. Densidad léxica content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) total_words = len([token for token in doc]) density_score = normalize_score( content_words / total_words if total_words > 0 else 0, optimal_value=0.6 ) # Cálculo del score final clarity_score = ( 0.3 * length_score + 0.3 * connector_score + 0.2 * complexity_score + 0.2 * density_score ) details = { 'length_score': length_score, 'connector_score': connector_score, 'complexity_score': complexity_score, 'density_score': density_score, 'avg_sentence_length': avg_length, 'length_variation': length_variation, 'connectors_per_sentence': connector_count / len(sentences) if len(sentences) > 0 else 0 } return clarity_score, details except Exception as e: logger.error(f"Error en analyze_clarity: {str(e)}") return 0.0, {} def analyze_reference_clarity(doc): """ Analiza la claridad de las referencias en el texto """ try: # Contar referencias anafóricas reference_count = 0 unclear_references = 0 for token in doc: # Detectar pronombres y determinantes if token.pos_ in ['PRON', 'DET']: reference_count += 1 # Verificar si tiene antecedente claro has_antecedent = False for ancestor in token.ancestors: if ancestor.pos_ == 'NOUN': has_antecedent = True break if not has_antecedent: unclear_references += 1 # Calcular score if reference_count == 0: return 1.0 # No hay referencias = claridad máxima clarity = 1.0 - (unclear_references / reference_count) return max(0.0, min(1.0, clarity)) except Exception as e: logger.error(f"Error en analyze_reference_clarity: {str(e)}") return 0.0 def analyze_vocabulary_diversity(doc): """Análisis mejorado de la diversidad y calidad del vocabulario""" try: # 1. Análisis básico de diversidad unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} total_words = len([token for token in doc if token.is_alpha]) basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 # 2. Análisis de registro academic_words = 0 narrative_words = 0 technical_terms = 0 # Clasificar palabras por registro for token in doc: if token.is_alpha: # Detectar términos académicos/técnicos if token.pos_ in ['NOUN', 'VERB', 'ADJ']: if any(parent.pos_ == 'NOUN' for parent in token.ancestors): technical_terms += 1 # Detectar palabras narrativas if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: narrative_words += 1 # 3. Análisis de complejidad sintáctica avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) # 4. Calcular score ponderado weights = { 'diversity': 0.3, 'technical': 0.3, 'narrative': 0.2, 'complexity': 0.2 } scores = { 'diversity': basic_diversity, 'technical': technical_terms / total_words if total_words > 0 else 0, 'narrative': narrative_words / total_words if total_words > 0 else 0, 'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras } # Score final ponderado final_score = sum(weights[key] * scores[key] for key in weights) # Información adicional para diagnóstico details = { 'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', 'scores': scores } return final_score, details except Exception as e: logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") return 0.0, {} def analyze_cohesion(doc): """Analiza la cohesión textual""" try: sentences = list(doc.sents) if len(sentences) < 2: logger.warning("Texto demasiado corto para análisis de cohesión") return 0.0 connections = 0 for i in range(len(sentences)-1): sent1_words = {token.lemma_ for token in sentences[i]} sent2_words = {token.lemma_ for token in sentences[i+1]} connections += len(sent1_words.intersection(sent2_words)) # Validar que haya conexiones antes de normalizar if connections == 0: logger.warning("No se encontraron conexiones entre oraciones") return 0.0 return normalize_score(connections, optimal_connections=max(5, len(sentences) * 0.2)) except Exception as e: logger.error(f"Error en analyze_cohesion: {str(e)}") return 0.0 def analyze_structure(doc): """Analiza la complejidad estructural""" try: if len(doc) == 0: logger.warning("Documento vacío") return 0.0 root_distances = [] for token in doc: if token.dep_ == 'ROOT': depths = get_dependency_depths(token) root_distances.extend(depths) if not root_distances: logger.warning("No se encontraron estructuras de dependencia") return 0.0 avg_depth = sum(root_distances) / len(root_distances) return normalize_score(avg_depth, optimal_depth=max(3, len(doc) * 0.1)) except Exception as e: logger.error(f"Error en analyze_structure: {str(e)}") return 0.0 # Funciones auxiliares de análisis def get_dependency_depths(token, depth=0): """Obtiene las profundidades de dependencia""" depths = [depth] for child in token.children: depths.extend(get_dependency_depths(child, depth + 1)) return depths def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None, optimal_connections=None, optimal_depth=None): """ Normaliza un valor a una escala de 0-1 con manejo de casos extremos. Args: value: Valor a normalizar optimal_value: Valor óptimo de referencia range_factor: Factor para ajustar el rango optimal_length: Longitud óptima (opcional) optimal_connections: Número óptimo de conexiones (opcional) optimal_depth: Profundidad óptima de estructura (opcional) Returns: float: Valor normalizado entre 0 y 1 """ try: # Validar valores negativos o cero if value < 0: logger.warning(f"Valor negativo recibido: {value}") return 0.0 # Manejar caso donde el valor es cero if value == 0: logger.warning("Valor cero recibido") return 0.0 # Identificar el valor de referencia a usar if optimal_depth is not None: reference = optimal_depth elif optimal_connections is not None: reference = optimal_connections elif optimal_length is not None: reference = optimal_length else: reference = optimal_value # Validar valor de referencia if reference <= 0: logger.warning(f"Valor de referencia inválido: {reference}") return 0.0 # Calcular diferencia y máxima diferencia permitida diff = abs(value - reference) max_diff = reference * range_factor # Validar max_diff if max_diff <= 0: logger.warning(f"Máxima diferencia inválida: {max_diff}") return 0.0 # Calcular score normalizado score = 1.0 - min(diff / max_diff, 1.0) # Asegurar que el resultado esté entre 0 y 1 return max(0.0, min(1.0, score)) except Exception as e: logger.error(f"Error en normalize_score: {str(e)}") return 0.0 # Funciones de generación de gráficos def generate_sentence_graphs(doc): """Genera visualizaciones de estructura de oraciones""" fig, ax = plt.subplots(figsize=(10, 6)) # Implementar visualización plt.close() return fig def generate_word_connections(doc): """Genera red de conexiones de palabras""" fig, ax = plt.subplots(figsize=(10, 6)) # Implementar visualización plt.close() return fig def generate_connection_paths(doc): """Genera patrones de conexión""" fig, ax = plt.subplots(figsize=(10, 6)) # Implementar visualización plt.close() return fig def create_vocabulary_network(doc): """ Genera el grafo de red de vocabulario. """ G = nx.Graph() # Crear nodos para palabras significativas words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] word_freq = Counter(words) # Añadir nodos con tamaño basado en frecuencia for word, freq in word_freq.items(): G.add_node(word, size=freq) # Crear conexiones basadas en co-ocurrencia window_size = 5 for i in range(len(words) - window_size): window = words[i:i+window_size] for w1, w2 in combinations(set(window), 2): if G.has_edge(w1, w2): G[w1][w2]['weight'] += 1 else: G.add_edge(w1, w2, weight=1) # Crear visualización fig, ax = plt.subplots(figsize=(12, 8)) pos = nx.spring_layout(G) # Dibujar nodos nx.draw_networkx_nodes(G, pos, node_size=[G.nodes[node]['size']*100 for node in G.nodes], node_color='lightblue', alpha=0.7) # Dibujar conexiones nx.draw_networkx_edges(G, pos, width=[G[u][v]['weight']*0.5 for u,v in G.edges], alpha=0.5) # Añadir etiquetas nx.draw_networkx_labels(G, pos) plt.title("Red de Vocabulario") plt.axis('off') return fig def create_syntax_complexity_graph(doc): """ Genera el diagrama de arco de complejidad sintáctica. Muestra la estructura de dependencias con colores basados en la complejidad. """ try: # Preparar datos para la visualización sentences = list(doc.sents) if not sentences: return None # Crear figura para el gráfico fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) # Colores para diferentes niveles de profundidad depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) y_offset = 0 max_x = 0 for sent in sentences: words = [token.text for token in sent] x_positions = range(len(words)) max_x = max(max_x, len(words)) # Dibujar palabras plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) plt.scatter(x_positions, [y_offset] * len(words), alpha=0) # Añadir texto for i, word in enumerate(words): plt.annotate(word, (i, y_offset), xytext=(0, -10), textcoords='offset points', ha='center') # Dibujar arcos de dependencia for token in sent: if token.dep_ != "ROOT": # Calcular profundidad de dependencia depth = 0 current = token while current.head != current: depth += 1 current = current.head # Determinar posiciones para el arco start = token.i - sent[0].i end = token.head.i - sent[0].i # Altura del arco basada en la distancia entre palabras height = 0.5 * abs(end - start) # Color basado en la profundidad color = depth_colors[min(depth, len(depth_colors)-1)] # Crear arco arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), width=abs(end - start), height=height, angle=0, theta1=0, theta2=180, color=color, alpha=0.6) ax.add_patch(arc) y_offset -= 2 # Configurar el gráfico plt.xlim(-1, max_x) plt.ylim(y_offset - 1, 1) plt.axis('off') plt.title("Complejidad Sintáctica") return fig except Exception as e: logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") return None def create_cohesion_heatmap(doc): """Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones.""" try: sentences = list(doc.sents) n_sentences = len(sentences) if n_sentences < 2: return None similarity_matrix = np.zeros((n_sentences, n_sentences)) for i in range(n_sentences): for j in range(n_sentences): sent1_lemmas = {token.lemma_ for token in sentences[i] if token.is_alpha and not token.is_stop} sent2_lemmas = {token.lemma_ for token in sentences[j] if token.is_alpha and not token.is_stop} if sent1_lemmas and sent2_lemmas: intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí union = len(sent1_lemmas | sent2_lemmas) # Y aquí similarity_matrix[i, j] = intersection / union if union > 0 else 0 # Crear visualización fig, ax = plt.subplots(figsize=(10, 8)) sns.heatmap(similarity_matrix, cmap='YlOrRd', square=True, xticklabels=False, yticklabels=False, cbar_kws={'label': 'Cohesión'}, ax=ax) plt.title("Mapa de Cohesión Textual") plt.xlabel("Oraciones") plt.ylabel("Oraciones") plt.tight_layout() return fig except Exception as e: logger.error(f"Error en create_cohesion_heatmap: {str(e)}") return None