#modules/semantic/semantic_interface.py import streamlit as st from streamlit_float import * from streamlit_antd_components import * from streamlit.components.v1 import html import io from io import BytesIO import base64 import matplotlib.pyplot as plt import pandas as pd import re from .semantic_process import ( process_semantic_input, format_semantic_results ) from ..utils.widget_utils import generate_unique_key from ..database.semantic_mongo_db import store_student_semantic_result from ..database.semantics_export import export_user_interactions import logging logger = logging.getLogger(__name__) def display_semantic_interface(lang_code, nlp_models, semantic_t): """ Interfaz para el análisis semántico Args: lang_code: Código del idioma actual nlp_models: Modelos de spaCy cargados semantic_t: Diccionario de traducciones semánticas """ # Inicializar el estado de la entrada input_key = f"semantic_input_{lang_code}" if input_key not in st.session_state: st.session_state[input_key] = "" # Inicializar contador de análisis si no existe if 'semantic_analysis_counter' not in st.session_state: st.session_state.semantic_analysis_counter = 0 # Campo de entrada de texto text_input = st.text_area( semantic_t.get('text_input_label', 'Enter text to analyze'), height=150, placeholder=semantic_t.get('text_input_placeholder', 'Enter your text here...'), value=st.session_state[input_key], key=f"text_area_{lang_code}_{st.session_state.semantic_analysis_counter}" ) # Opción para cargar archivo uploaded_file = st.file_uploader( semantic_t.get('file_uploader', 'Or upload a text file'), type=['txt'], key=f"file_uploader_{lang_code}_{st.session_state.semantic_analysis_counter}" ) if st.button( semantic_t.get('analyze_button', 'Analyze text'), key=f"analyze_button_{lang_code}_{st.session_state.semantic_analysis_counter}" ): if text_input or uploaded_file is not None: try: with st.spinner(semantic_t.get('processing', 'Processing...')): # Obtener el texto a analizar text_content = uploaded_file.getvalue().decode('utf-8') if uploaded_file else text_input # Realizar el análisis analysis_result = process_semantic_input( text_content, lang_code, nlp_models, semantic_t ) # Guardar resultado en el estado de la sesión st.session_state.semantic_result = analysis_result st.session_state.semantic_analysis_counter += 1 # Mostrar resultados display_semantic_results( st.session_state.semantic_result, lang_code, semantic_t ) except Exception as e: logger.error(f"Error en análisis semántico: {str(e)}") st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) else: st.warning(semantic_t.get('warning_message', 'Please enter text or upload a file')) # Si no se presionó el botón, verificar si hay resultados previos elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: display_semantic_results( st.session_state.semantic_result, lang_code, semantic_t ) else: st.info(semantic_t.get('initial_message', 'Enter text to begin analysis')) def display_semantic_results(result, lang_code, semantic_t): """ Muestra los resultados del análisis semántico Args: result: Resultados del análisis lang_code: Código del idioma semantic_t: Diccionario de traducciones """ if result is None or not result['success']: st.warning(semantic_t.get('no_results', 'No results available')) return analysis = result['analysis'] # Mostrar conceptos clave with st.expander(semantic_t.get('key_concepts', 'Key Concepts'), expanded=True): concept_text = " | ".join([ f"{concept} ({frequency:.2f})" for concept, frequency in analysis['key_concepts'] ]) st.write(concept_text) # Mostrar gráfico de relaciones conceptuales with st.expander(semantic_t.get('conceptual_relations', 'Conceptual Relations'), expanded=True): st.image(analysis['concept_graph']) # Mostrar gráfico de entidades with st.expander(semantic_t.get('entity_relations', 'Entity Relations'), expanded=True): st.image(analysis['entity_graph']) # Mostrar entidades identificadas if 'entities' in analysis: with st.expander(semantic_t.get('identified_entities', 'Identified Entities'), expanded=True): for entity_type, entities in analysis['entities'].items(): st.subheader(entity_type) st.write(", ".join(entities)) # Botón de exportación if st.button(semantic_t.get('export_button', 'Export Analysis')): pdf_buffer = export_user_interactions(st.session_state.username, 'semantic') st.download_button( label=semantic_t.get('download_pdf', 'Download PDF'), data=pdf_buffer, file_name="semantic_analysis.pdf", mime="application/pdf" )