Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
@@ -143,41 +143,121 @@ def analyze_clarity(doc):
|
|
143 |
logger.error(f"Error en analyze_clarity: {str(e)}")
|
144 |
return 0.0, {}
|
145 |
|
146 |
-
|
|
|
147 |
"""
|
148 |
-
Analiza la claridad
|
149 |
"""
|
150 |
try:
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
for token in doc:
|
156 |
-
|
157 |
-
|
158 |
-
reference_count += 1
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
#
|
171 |
-
|
172 |
-
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
except Exception as e:
|
178 |
-
logger.error(f"Error en
|
179 |
-
return 0.0
|
180 |
|
|
|
181 |
def analyze_vocabulary_diversity(doc):
|
182 |
"""An谩lisis mejorado de la diversidad y calidad del vocabulario"""
|
183 |
try:
|
@@ -547,9 +627,6 @@ def normalize_score(value, metric_type,
|
|
547 |
logger.error(f"Error en normalize_score: {str(e)}")
|
548 |
return 0.0
|
549 |
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
##############################################################
|
554 |
|
555 |
# Funciones de generaci贸n de gr谩ficos
|
|
|
143 |
logger.error(f"Error en analyze_clarity: {str(e)}")
|
144 |
return 0.0, {}
|
145 |
|
146 |
+
###################################################################################3
|
147 |
+
def analyze_clarity(doc):
|
148 |
"""
|
149 |
+
Analiza la claridad del texto considerando m煤ltiples factores.
|
150 |
"""
|
151 |
try:
|
152 |
+
sentences = list(doc.sents)
|
153 |
+
if not sentences:
|
154 |
+
return 0.0, {}
|
155 |
+
|
156 |
+
# 1. Longitud de oraciones
|
157 |
+
sentence_lengths = [len(sent) for sent in sentences]
|
158 |
+
avg_length = sum(sentence_lengths) / len(sentences)
|
159 |
+
|
160 |
+
# Normalizar usando los umbrales definidos para clarity
|
161 |
+
length_score = normalize_score(
|
162 |
+
value=avg_length,
|
163 |
+
metric_type='clarity',
|
164 |
+
optimal_length=20, # Una oraci贸n ideal tiene ~20 palabras
|
165 |
+
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
|
166 |
+
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
|
167 |
+
)
|
168 |
+
|
169 |
+
# 2. An谩lisis de conectores
|
170 |
+
connector_count = 0
|
171 |
+
connector_weights = {
|
172 |
+
'CCONJ': 1.0, # Coordinantes
|
173 |
+
'SCONJ': 1.2, # Subordinantes
|
174 |
+
'ADV': 0.8 # Adverbios conectivos
|
175 |
+
}
|
176 |
|
177 |
for token in doc:
|
178 |
+
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
|
179 |
+
connector_count += connector_weights[token.pos_]
|
|
|
180 |
|
181 |
+
# Normalizar conectores por oraci贸n
|
182 |
+
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
|
183 |
+
connector_score = normalize_score(
|
184 |
+
value=connectors_per_sentence,
|
185 |
+
metric_type='clarity',
|
186 |
+
optimal_connections=1.5, # ~1.5 conectores por oraci贸n es 贸ptimo
|
187 |
+
min_threshold=0.60,
|
188 |
+
target_threshold=0.75
|
189 |
+
)
|
190 |
+
|
191 |
+
# 3. Complejidad estructural
|
192 |
+
clause_count = 0
|
193 |
+
for sent in sentences:
|
194 |
+
verbs = [token for token in sent if token.pos_ == 'VERB']
|
195 |
+
clause_count += len(verbs)
|
196 |
|
197 |
+
complexity_raw = clause_count / len(sentences) if sentences else 0
|
198 |
+
complexity_score = normalize_score(
|
199 |
+
value=complexity_raw,
|
200 |
+
metric_type='clarity',
|
201 |
+
optimal_depth=2.0, # ~2 cl谩usulas por oraci贸n es 贸ptimo
|
202 |
+
min_threshold=0.60,
|
203 |
+
target_threshold=0.75
|
204 |
+
)
|
205 |
+
|
206 |
+
# 4. Densidad l茅xica
|
207 |
+
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
208 |
+
total_words = len([token for token in doc if token.is_alpha])
|
209 |
+
density = content_words / total_words if total_words > 0 else 0
|
210 |
|
211 |
+
density_score = normalize_score(
|
212 |
+
value=density,
|
213 |
+
metric_type='clarity',
|
214 |
+
optimal_connections=0.6, # 60% de palabras de contenido es 贸ptimo
|
215 |
+
min_threshold=0.60,
|
216 |
+
target_threshold=0.75
|
217 |
+
)
|
218 |
+
|
219 |
+
# Score final ponderado
|
220 |
+
weights = {
|
221 |
+
'length': 0.3,
|
222 |
+
'connectors': 0.3,
|
223 |
+
'complexity': 0.2,
|
224 |
+
'density': 0.2
|
225 |
+
}
|
226 |
+
|
227 |
+
clarity_score = (
|
228 |
+
weights['length'] * length_score +
|
229 |
+
weights['connectors'] * connector_score +
|
230 |
+
weights['complexity'] * complexity_score +
|
231 |
+
weights['density'] * density_score
|
232 |
+
)
|
233 |
+
|
234 |
+
details = {
|
235 |
+
'length_score': length_score,
|
236 |
+
'connector_score': connector_score,
|
237 |
+
'complexity_score': complexity_score,
|
238 |
+
'density_score': density_score,
|
239 |
+
'avg_sentence_length': avg_length,
|
240 |
+
'connectors_per_sentence': connectors_per_sentence,
|
241 |
+
'density': density
|
242 |
+
}
|
243 |
+
|
244 |
+
# Agregar logging para diagn贸stico
|
245 |
+
logger.info(f"""
|
246 |
+
Scores de Claridad:
|
247 |
+
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
|
248 |
+
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oraci贸n)
|
249 |
+
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cl谩usulas)
|
250 |
+
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
|
251 |
+
- Score Final: {clarity_score:.2f}
|
252 |
+
""")
|
253 |
+
|
254 |
+
return clarity_score, details
|
255 |
+
|
256 |
except Exception as e:
|
257 |
+
logger.error(f"Error en analyze_clarity: {str(e)}")
|
258 |
+
return 0.0, {}
|
259 |
|
260 |
+
##########################################################################3
|
261 |
def analyze_vocabulary_diversity(doc):
|
262 |
"""An谩lisis mejorado de la diversidad y calidad del vocabulario"""
|
263 |
try:
|
|
|
627 |
logger.error(f"Error en normalize_score: {str(e)}")
|
628 |
return 0.0
|
629 |
|
|
|
|
|
|
|
630 |
##############################################################
|
631 |
|
632 |
# Funciones de generaci贸n de gr谩ficos
|