Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
@@ -88,29 +88,51 @@ def analyze_vocabulary_diversity(doc):
|
|
88 |
|
89 |
def analyze_cohesion(doc):
|
90 |
"""Analiza la cohesión textual"""
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def analyze_structure(doc):
|
100 |
"""Analiza la complejidad estructural"""
|
101 |
try:
|
|
|
|
|
|
|
|
|
102 |
root_distances = []
|
103 |
for token in doc:
|
104 |
if token.dep_ == 'ROOT':
|
105 |
depths = get_dependency_depths(token)
|
106 |
root_distances.extend(depths)
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
109 |
except Exception as e:
|
110 |
logger.error(f"Error en analyze_structure: {str(e)}")
|
111 |
return 0.0
|
112 |
|
113 |
-
|
114 |
# Funciones auxiliares de análisis
|
115 |
def get_dependency_depths(token, depth=0):
|
116 |
"""Obtiene las profundidades de dependencia"""
|
@@ -122,7 +144,7 @@ def get_dependency_depths(token, depth=0):
|
|
122 |
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
|
123 |
optimal_connections=None, optimal_depth=None):
|
124 |
"""
|
125 |
-
Normaliza un valor a una escala de 0-1.
|
126 |
|
127 |
Args:
|
128 |
value: Valor a normalizar
|
@@ -136,23 +158,46 @@ def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=N
|
|
136 |
float: Valor normalizado entre 0 y 1
|
137 |
"""
|
138 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
if optimal_depth is not None:
|
140 |
-
|
141 |
-
max_diff = optimal_depth * range_factor
|
142 |
-
return 1.0 - min(diff / max_diff, 1.0)
|
143 |
elif optimal_connections is not None:
|
144 |
-
|
145 |
-
max_diff = optimal_connections * range_factor
|
146 |
-
return 1.0 - min(diff / max_diff, 1.0)
|
147 |
elif optimal_length is not None:
|
148 |
-
|
149 |
-
max_diff = optimal_length * range_factor
|
150 |
-
return 1.0 - min(diff / max_diff, 1.0)
|
151 |
else:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
except Exception as e:
|
157 |
logger.error(f"Error en normalize_score: {str(e)}")
|
158 |
return 0.0
|
|
|
88 |
|
89 |
def analyze_cohesion(doc):
|
90 |
"""Analiza la cohesión textual"""
|
91 |
+
try:
|
92 |
+
sentences = list(doc.sents)
|
93 |
+
if len(sentences) < 2:
|
94 |
+
logger.warning("Texto demasiado corto para análisis de cohesión")
|
95 |
+
return 0.0
|
96 |
+
|
97 |
+
connections = 0
|
98 |
+
for i in range(len(sentences)-1):
|
99 |
+
sent1_words = {token.lemma_ for token in sentences[i]}
|
100 |
+
sent2_words = {token.lemma_ for token in sentences[i+1]}
|
101 |
+
connections += len(sent1_words.intersection(sent2_words))
|
102 |
+
|
103 |
+
# Validar que haya conexiones antes de normalizar
|
104 |
+
if connections == 0:
|
105 |
+
logger.warning("No se encontraron conexiones entre oraciones")
|
106 |
+
return 0.0
|
107 |
+
|
108 |
+
return normalize_score(connections, optimal_connections=max(5, len(sentences) * 0.2))
|
109 |
+
except Exception as e:
|
110 |
+
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
111 |
+
return 0.0
|
112 |
|
113 |
def analyze_structure(doc):
|
114 |
"""Analiza la complejidad estructural"""
|
115 |
try:
|
116 |
+
if len(doc) == 0:
|
117 |
+
logger.warning("Documento vacío")
|
118 |
+
return 0.0
|
119 |
+
|
120 |
root_distances = []
|
121 |
for token in doc:
|
122 |
if token.dep_ == 'ROOT':
|
123 |
depths = get_dependency_depths(token)
|
124 |
root_distances.extend(depths)
|
125 |
+
|
126 |
+
if not root_distances:
|
127 |
+
logger.warning("No se encontraron estructuras de dependencia")
|
128 |
+
return 0.0
|
129 |
+
|
130 |
+
avg_depth = sum(root_distances) / len(root_distances)
|
131 |
+
return normalize_score(avg_depth, optimal_depth=max(3, len(doc) * 0.1))
|
132 |
except Exception as e:
|
133 |
logger.error(f"Error en analyze_structure: {str(e)}")
|
134 |
return 0.0
|
135 |
|
|
|
136 |
# Funciones auxiliares de análisis
|
137 |
def get_dependency_depths(token, depth=0):
|
138 |
"""Obtiene las profundidades de dependencia"""
|
|
|
144 |
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
|
145 |
optimal_connections=None, optimal_depth=None):
|
146 |
"""
|
147 |
+
Normaliza un valor a una escala de 0-1 con manejo de casos extremos.
|
148 |
|
149 |
Args:
|
150 |
value: Valor a normalizar
|
|
|
158 |
float: Valor normalizado entre 0 y 1
|
159 |
"""
|
160 |
try:
|
161 |
+
# Validar valores negativos o cero
|
162 |
+
if value < 0:
|
163 |
+
logger.warning(f"Valor negativo recibido: {value}")
|
164 |
+
return 0.0
|
165 |
+
|
166 |
+
# Manejar caso donde el valor es cero
|
167 |
+
if value == 0:
|
168 |
+
logger.warning("Valor cero recibido")
|
169 |
+
return 0.0
|
170 |
+
|
171 |
+
# Identificar el valor de referencia a usar
|
172 |
if optimal_depth is not None:
|
173 |
+
reference = optimal_depth
|
|
|
|
|
174 |
elif optimal_connections is not None:
|
175 |
+
reference = optimal_connections
|
|
|
|
|
176 |
elif optimal_length is not None:
|
177 |
+
reference = optimal_length
|
|
|
|
|
178 |
else:
|
179 |
+
reference = optimal_value
|
180 |
+
|
181 |
+
# Validar valor de referencia
|
182 |
+
if reference <= 0:
|
183 |
+
logger.warning(f"Valor de referencia inválido: {reference}")
|
184 |
+
return 0.0
|
185 |
+
|
186 |
+
# Calcular diferencia y máxima diferencia permitida
|
187 |
+
diff = abs(value - reference)
|
188 |
+
max_diff = reference * range_factor
|
189 |
+
|
190 |
+
# Validar max_diff
|
191 |
+
if max_diff <= 0:
|
192 |
+
logger.warning(f"Máxima diferencia inválida: {max_diff}")
|
193 |
+
return 0.0
|
194 |
+
|
195 |
+
# Calcular score normalizado
|
196 |
+
score = 1.0 - min(diff / max_diff, 1.0)
|
197 |
+
|
198 |
+
# Asegurar que el resultado esté entre 0 y 1
|
199 |
+
return max(0.0, min(1.0, score))
|
200 |
+
|
201 |
except Exception as e:
|
202 |
logger.error(f"Error en normalize_score: {str(e)}")
|
203 |
return 0.0
|