Update modules/semantic/semantic_live_interface.py
Browse files
modules/semantic/semantic_live_interface.py
CHANGED
@@ -23,7 +23,7 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
23 |
Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
|
24 |
"""
|
25 |
try:
|
26 |
-
# 1. Inicializar el estado de la sesión
|
27 |
if 'semantic_live_state' not in st.session_state:
|
28 |
st.session_state.semantic_live_state = {
|
29 |
'analysis_count': 0,
|
@@ -32,24 +32,29 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
32 |
'text_changed': False
|
33 |
}
|
34 |
|
35 |
-
# 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
input_col, result_col = st.columns([1, 3])
|
37 |
|
38 |
# Columna izquierda: Entrada de texto
|
39 |
with input_col:
|
40 |
st.subheader(semantic_t.get('enter_text', 'Ingrese su texto'))
|
41 |
|
42 |
-
# Área de texto
|
43 |
text_input = st.text_area(
|
44 |
semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'),
|
45 |
height=500,
|
46 |
key="semantic_live_text",
|
47 |
-
value=st.session_state.semantic_live_state.get('current_text', '')
|
|
|
|
|
48 |
)
|
49 |
|
50 |
-
# Actualizar el texto actual en el estado
|
51 |
-
st.session_state.semantic_live_state['current_text'] = text_input
|
52 |
-
|
53 |
# Botón de análisis y procesamiento
|
54 |
analyze_button = st.button(
|
55 |
semantic_t.get('analyze_button', 'Analizar'),
|
@@ -60,11 +65,9 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
60 |
use_container_width=True
|
61 |
)
|
62 |
|
63 |
-
# Procesar análisis cuando se presiona el botón
|
64 |
if analyze_button and text_input:
|
65 |
try:
|
66 |
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
67 |
-
# Realizar análisis
|
68 |
analysis_result = process_semantic_input(
|
69 |
text_input,
|
70 |
lang_code,
|
@@ -73,11 +76,10 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
73 |
)
|
74 |
|
75 |
if analysis_result['success']:
|
76 |
-
# Guardar resultado en el estado
|
77 |
st.session_state.semantic_live_state['last_result'] = analysis_result
|
78 |
st.session_state.semantic_live_state['analysis_count'] += 1
|
|
|
79 |
|
80 |
-
# Guardar en base de datos
|
81 |
store_student_semantic_result(
|
82 |
st.session_state.username,
|
83 |
text_input,
|
@@ -94,17 +96,14 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
94 |
with result_col:
|
95 |
st.subheader(semantic_t.get('live_results', 'Resultados en vivo'))
|
96 |
|
97 |
-
# Mostrar resultados si existen
|
98 |
if 'last_result' in st.session_state.semantic_live_state and \
|
99 |
st.session_state.semantic_live_state['last_result'] is not None:
|
100 |
|
101 |
analysis = st.session_state.semantic_live_state['last_result']['analysis']
|
102 |
|
103 |
-
# Verificar que tenemos datos para mostrar
|
104 |
if 'key_concepts' in analysis and analysis['key_concepts'] and \
|
105 |
'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
106 |
|
107 |
-
# Estilos para la visualización
|
108 |
st.markdown("""
|
109 |
<style>
|
110 |
.unified-container {
|
@@ -117,28 +116,31 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
117 |
}
|
118 |
.concept-table {
|
119 |
display: flex;
|
120 |
-
flex-wrap: wrap
|
121 |
-
gap:
|
122 |
-
padding:
|
123 |
background-color: #f8f9fa;
|
|
|
|
|
124 |
}
|
125 |
.concept-item {
|
126 |
background-color: white;
|
127 |
-
border-radius:
|
128 |
-
padding:
|
129 |
-
display: flex;
|
130 |
align-items: center;
|
131 |
-
gap:
|
132 |
-
box-shadow: 0 1px
|
|
|
133 |
}
|
134 |
.concept-name {
|
135 |
font-weight: 500;
|
136 |
color: #1f2937;
|
137 |
-
font-size: 0.
|
138 |
}
|
139 |
.concept-freq {
|
140 |
color: #6b7280;
|
141 |
-
font-size: 0.
|
142 |
}
|
143 |
.graph-section {
|
144 |
padding: 20px;
|
@@ -147,9 +149,8 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
147 |
</style>
|
148 |
""", unsafe_allow_html=True)
|
149 |
|
150 |
-
# Mostrar conceptos y grafo
|
151 |
with st.container():
|
152 |
-
# Conceptos
|
153 |
concepts_html = """
|
154 |
<div class="unified-container">
|
155 |
<div class="concept-table">
|
@@ -192,4 +193,5 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
192 |
|
193 |
except Exception as e:
|
194 |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
195 |
-
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
|
|
|
23 |
Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
|
24 |
"""
|
25 |
try:
|
26 |
+
# 1. Inicializar el estado de la sesión de manera más robusta
|
27 |
if 'semantic_live_state' not in st.session_state:
|
28 |
st.session_state.semantic_live_state = {
|
29 |
'analysis_count': 0,
|
|
|
32 |
'text_changed': False
|
33 |
}
|
34 |
|
35 |
+
# 2. Función para manejar cambios en el texto
|
36 |
+
def on_text_change():
|
37 |
+
current_text = st.session_state.semantic_live_text
|
38 |
+
st.session_state.semantic_live_state['current_text'] = current_text
|
39 |
+
st.session_state.semantic_live_state['text_changed'] = True
|
40 |
+
|
41 |
+
# 3. Crear columnas con nueva proporción (1:3)
|
42 |
input_col, result_col = st.columns([1, 3])
|
43 |
|
44 |
# Columna izquierda: Entrada de texto
|
45 |
with input_col:
|
46 |
st.subheader(semantic_t.get('enter_text', 'Ingrese su texto'))
|
47 |
|
48 |
+
# Área de texto con manejo de eventos
|
49 |
text_input = st.text_area(
|
50 |
semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'),
|
51 |
height=500,
|
52 |
key="semantic_live_text",
|
53 |
+
value=st.session_state.semantic_live_state.get('current_text', ''),
|
54 |
+
on_change=on_text_change,
|
55 |
+
label_visibility="collapsed" # Oculta el label para mayor estabilidad
|
56 |
)
|
57 |
|
|
|
|
|
|
|
58 |
# Botón de análisis y procesamiento
|
59 |
analyze_button = st.button(
|
60 |
semantic_t.get('analyze_button', 'Analizar'),
|
|
|
65 |
use_container_width=True
|
66 |
)
|
67 |
|
|
|
68 |
if analyze_button and text_input:
|
69 |
try:
|
70 |
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
|
|
71 |
analysis_result = process_semantic_input(
|
72 |
text_input,
|
73 |
lang_code,
|
|
|
76 |
)
|
77 |
|
78 |
if analysis_result['success']:
|
|
|
79 |
st.session_state.semantic_live_state['last_result'] = analysis_result
|
80 |
st.session_state.semantic_live_state['analysis_count'] += 1
|
81 |
+
st.session_state.semantic_live_state['text_changed'] = False
|
82 |
|
|
|
83 |
store_student_semantic_result(
|
84 |
st.session_state.username,
|
85 |
text_input,
|
|
|
96 |
with result_col:
|
97 |
st.subheader(semantic_t.get('live_results', 'Resultados en vivo'))
|
98 |
|
|
|
99 |
if 'last_result' in st.session_state.semantic_live_state and \
|
100 |
st.session_state.semantic_live_state['last_result'] is not None:
|
101 |
|
102 |
analysis = st.session_state.semantic_live_state['last_result']['analysis']
|
103 |
|
|
|
104 |
if 'key_concepts' in analysis and analysis['key_concepts'] and \
|
105 |
'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
106 |
|
|
|
107 |
st.markdown("""
|
108 |
<style>
|
109 |
.unified-container {
|
|
|
116 |
}
|
117 |
.concept-table {
|
118 |
display: flex;
|
119 |
+
flex-wrap: nowrap; /* Evita el wrap */
|
120 |
+
gap: 6px; /* Reducido el gap */
|
121 |
+
padding: 10px;
|
122 |
background-color: #f8f9fa;
|
123 |
+
overflow-x: auto; /* Permite scroll horizontal si es necesario */
|
124 |
+
white-space: nowrap; /* Mantiene todo en una línea */
|
125 |
}
|
126 |
.concept-item {
|
127 |
background-color: white;
|
128 |
+
border-radius: 4px;
|
129 |
+
padding: 4px 8px; /* Padding reducido */
|
130 |
+
display: inline-flex; /* Cambiado a inline-flex */
|
131 |
align-items: center;
|
132 |
+
gap: 4px; /* Gap reducido */
|
133 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
134 |
+
flex-shrink: 0; /* Evita que los items se encojan */
|
135 |
}
|
136 |
.concept-name {
|
137 |
font-weight: 500;
|
138 |
color: #1f2937;
|
139 |
+
font-size: 0.8em; /* Tamaño de fuente reducido */
|
140 |
}
|
141 |
.concept-freq {
|
142 |
color: #6b7280;
|
143 |
+
font-size: 0.75em; /* Tamaño de fuente reducido */
|
144 |
}
|
145 |
.graph-section {
|
146 |
padding: 20px;
|
|
|
149 |
</style>
|
150 |
""", unsafe_allow_html=True)
|
151 |
|
|
|
152 |
with st.container():
|
153 |
+
# Conceptos en una sola línea
|
154 |
concepts_html = """
|
155 |
<div class="unified-container">
|
156 |
<div class="concept-table">
|
|
|
193 |
|
194 |
except Exception as e:
|
195 |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
196 |
+
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
197 |
+
|